

lira states

iRTMENT OF

MMERCE
JUCATION

VS
•dm*f

NBS TECHNICAL NOTE 552
National Bureau of Standards

Library, _ £-01 Admin. Bidg.

OCT 6 198J

131096

/bo

OMNITABI

User's Reference Manual

U.S.

PARTMENT
OF

COMMERCE

National

Bureau

of

Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards 1 was established by an act of Congress March 3,

1901. The Bureau's overall goal is to strengthen and advance the Nation's science and
technology and facilitate their effective application for public benefit. To this end, the

Bureau conducts research and provides: (1) a basis for the Nation's physical measure-
ment system, (2) scientific and technological services for industry and government, (3)

a technical basis for equity in trade, and (4) technical services to promote public safety.

The Bureau consists of the Institute for Basic Standards, the Institute for Materials

Research, the Institute for Applied Technology, the Center for Computer Sciences and
Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the

United States of a complete and consistent system of physical measurement; coordinates

that system with measurement systems of other nations; and furnishes essential services

leading to accurate and uniform physical measurements throughout the Nation's scien-

tific community, industry, and commerce. The Institute consists of a Center for Radia-

tion Research, an Office of Measurement Services and the following divisions:

Applied Mathematics—Electricity—Heat—Mechanics—Optical Physics—Linac

Radiation 2—Nuclear Radiation 2—Applied Radiation 2—Quantum Electronics3—
Electromagnetics 3—Time and Frequency 3—Laboratory Astrophysics3—Cryo-

genics3
.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research lead-

ing to improved methods of measurement, standards, and data on the properties of

well-characterized materials needed by industry, commerce, educational institutions, and
Government; provides advisory and research services to other Government agencies;

and develops, produces, and distributes standard reference materials. The Institute con-

sists of the Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Reactor

Radiation—Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to pro-

mote the use of available technology and to facilitate technological innovation in indus-

try and Government; cooperates with public and private organizations leading to the

development of technological standards (including mandatory safety standards), codes

and methods of test; and provides technical advice and services to Government agencies

upon request. The Institute also monitors NBS engineering standards activities and

provides liaison between NBS and national and international engineering standards

bodies. The Institute consists of the following technical divisions and offices:

Engineering Standards Services—Weights and Measures—Flammable Fabrics

—

Invention and Innovation—Vehicle Systems Research—Product Evaluation

Technology—Building Research—Electronic Technology—Technical Analysis

—

Measurement Engineering.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts re-

search and provides technical services designed to aid Government agencies in improv-

ing cost effectiveness in the conduct of their programs through the selection, acquisition,

and effective utilization of automatic data processing equipment; and serves as the prin-

cipal focus within the executive branch for the development of Federal standards for

automatic data processing equipment, techniques, and computer languages. The Center

consists of the following offices and divisions:

Information Processing Standards-—Computer Information—Computer Services

—Systems Development—Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination

and accessibility of scientific information generated within NBS and other agencies of

the Federal Government; promotes the development of the National Standard Reference

Data System and a system of information analysis centers dealing with the broader

aspects of the National Measurement System; provides appropriate services to ensure

that the NBS staff has optimum accessibility to the scientific information of the world,

and directs the public information activities of the Bureau. The Office consists of the

following organizational units:

Office of Standard Reference Data—Office of Technical Information and

Publications—Library—Office of Public Information—Office of International

Relations.

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washing-
ton, D.C. 20234.

2 Part of the Center for Radiation Research.
3 I nratrH at Ronlrier rr.lr.raHn 80107

10
UNITED STATES DEPARTMENT OF COMMERCE

Maurice H. Stans, Secretary

NATIONAL BUREAU OF STANDARDS • Lewis M. Branscomb, Director

.5

NBS TECHNICAL NOTE 552
ISSUED OCTOBER 1971

Nat. Bur. Stand. (U.S.), Tech. Note 552, 264 pages (Oct. 1971)

CODEN: NBTNA

OMNITAB H
User's Reference Manual

David Hogben, Sally T. Peavy, and Ruth N. Varner

Statistical Engineering Laboratory

Applied Mathematics Division

Institute for Basic Standards

National Bureau of Standards

Washington, D.C. 20234

NBS Technical Notes are designed to supplement the

Bureau's regular publications program. They provide a

means for making available scientific data that are of

transient or limited interest. Technical Notes may be

listed or referred to in the open literature.

For sale by the Superintendent of Documents, U.S. Government Printing Office

Washington, D.C. 20402 - Price $2 $ ^
Stock Number 0303-0918

OMNITAB II User's Reference Manual

David Hogben, Sally T. Peavy and Ruth N. Varner

OMNITAB II, a highly user-oriented system for a large computer, is
designed to make computing easy, accurate and effective, particularly for
persons who are not programmers. It is a general -purpose program, which
can be learned quickly, for both simple and complex numerical,
statistical and data analysis. OMNITAB executes instructions written in
the form of simple English sentences. Problem- solving is further
enhanced by the natural structure of the system and its many features

.

OMNITAB has been used successfully in government, industry and
universities across the country and in several centers abroad. The
system has been implemented on large computers of at least seven
different manufacturers.

The original version of OMNITAB has been completely rewritten to
make it as machine independent as possible and to implement many
improvements. This manual describes Version 5.0. Details are presented
so that the user can easily find the specific information needed in any
particular instance. PART A is a simple, compact introduction to OMNITAB
for people who have had no experience using a large computer. PART B

describes the general and special features of the OMNITAB system. PART C

gives explanations, with short examples, for the use of specific
instructions. PART D is a complete alphabetical list of the instructions
which are in the system.

Key words: Automatic printing, Bessel functions, data analysis, data
manipulation, easy and effective programming in English, list of
instructions, matrix operations, numerical analysis, OMNITAB II user
oriented computing system, self-teaching, statistical analysis.

Introduction

' OMNITAB is an interpretative computing system developed and maintained by the National
Bureau of Standards to enable scientists to use a large computer easily, effectively and
accurately for numerical, statistical and data analysis without having to become
professional programmers. It was conceived by Joseph Hilsenrath about ten years ago and
subsequently developed by him and his colleagues. A complete description of the first
Version of OMNITAB is given in

HILSENRATH, J., ZIEGLER, G. G. , MESSINA, C. G., WALSH P. J. and HERBOLD, R. J.

(1966). OMNITAB: A Computer Program for Statistical and Numerical Analysis
,

National Bureau of Standards Handbook 101, Superintendent of Documents, U.S.

Government Printing Office, Washington, D.C. 20402. Reissued 1968 with
corrections

.

During the past five years, the OMNITAB program has been completely rewritten to make it

as machine independent as the state of the art will permit. In the course of this revision,

numerous additions and improvements have been made which necessitate complete documentation,
including a new user's manual. The basic philosophy and spirit of OMNITAB, however, remain
the same. After the rewriting of OMNITAB had begun it was decided to refer to the newer
versions as OMNITAB II.

OMNITAB II is characterized by continual development with new instructions being added
and existing instructions being improved. Hence, the present version of OMNITAB II can not
be considered complete. In fact, there are some important instructions which were
previously available, but so far have not been implemented. After some deliberation, the
OMNITAB Steering Committee decided that any further delay in documentation would be unwise
and further improvements should be postponed until this documentation is made available.
After this manual is published, we shall resume development of OMNITAB II and continually
try to respond to users' needs.

The manual is divided into four parts. PART A is a simple, compact Introduction to
OMNITAB II for people who have had no experience using a large computer or OMNITAB. PART B
describes the general features of the OMNITAB II computing system. PART C gives detailed
explanations, with short examples, for the use of specific instructions. PART D is a
complete alphabetical list of all the instructions which are in the system. A comprehensive
table of contents is given at the beginning. In addition, at the beginning of PART C there
is a list of commands under functional titles and at the end of PART C there is an index to
the commands which are described. The title page of each PART contains a short abstract of
the contents.

The early history of OMNITAB was described in NBS Handbook 101 and will not be repeated
here. Also, there will be no serious attempt to present examples of sets of OMNITAB
instructions to solve problems as these appear in Handbook 101. Rather, we shall
concentrate on presenting short examples to explain the use of particular instructions and
to present more details of the instructions based on accumulated knowledge gained from the

widespread use of OMNITAB II.

This manual is intended to be a reference manual to accompany the magnetic tape copy of

OMNITAB II deposited with the National Technical Information Service (formerly the

"Clearinghouse") where the OMNITAB II program can be obtained. See section BS.l for further

details, including a description of the other documentation of OMNITAB II.

This manual describes Version 5.0 of OMNITAB II which is in operation at the Washington
D.C. site of the National Bureau of Standards in the batch processing mode. Users of

OMNITAB II Version 5.0 at other computer centers may find some minor differences.

Certainly, the control cards (section B1.4) will be different. Certain parameters, such as

the size of the worksheet, may vary. Constants affecting overflow and underflow vary from

one computer to another. The use of magnetic tapes (section CI. 10) may be different. When
operating in the time- sharing mode the action taken when fatal errors occur will be

different.

The contributions of many NBS mathematicians and scientists were acknowledged in NBS

Handbook 101. Many more have contributed to the present Version of OMNITAB. A great deal

of the early work of converting OMNITAB to a machine independent form was done by Walter J.

Gilbert who also contributed several new features. Much of the present programming and

maintenance is done by Sally T. Peavy and Ruth N. Varner with help from Shirley Bremer.

David Hogben and Sally T. Peavy, Statistical Engineering Laboratory, direct the development

and maintenance of the OMNITAB II computing system. Many users have made valuable

suggestions which have led to improvements. Other members of the Statistical Engineering

Laboratory have made contributions, particularly to this manual and the formatting for the

statistical instructions with automatic printing. Joseph M. Cameron did much to improve the

set of instructions for matrix operations, to revise the curve fitting instruction, and to

influence the accuracy of the computing algorithms. The following persons have contributed

to one or more subprograms for the current Version of OMNITAB II: Walter J. Gilbert,

William G. Hall, David Hogben, Robert C. McClenon, Carla G. Messina, Bradley A. Peavy, Sally

T. Peavy, M. Stuart Scott, Irene A. Stegun, Ruth N. Varner, Philip J. Walsh, Roy H. Waaler
and Ruth Zucker.

We thank Bradley A. Peavy for considerable assistance in writing section 9 of PART C,

Robert C. McClenon for writing section 10 of PART C and M. Stuart Scott for assistance in
writing section C4.6. We thank Shirley G. Bremer for help in proof reading and in the
writing of sets of instructions for verifying many of the statements made in the manual.
Also, we thank the many readers of a preliminary draft for their comments and corrections.

It is impossible to write a manual such as this which is free of errors. Hopefully, the
number of errors is small, but we will apprectiate any comments from readers so that we can
pass on information to users.

How To Read This Manual

This is a reference manual; not a textbook. The style is not conducive to cover to

cover reading. Rather, it is designed so that the user can easily and quickly locate the
information he requires in any specific instance.

References are not given at the end of the manual, but appear in the text. There are

two exceptions to this rule. Frequent reference is made to Hilsenrath et al. or NBS
Handbook 101. The complete reference is given above. In section 4 of PART C, all the

references for the statistical instructions are collected together and put in section C4.8.

We have tried to supply a liberal amount of cross referencing. References to another

section in the same PART of the manual give the section and sub-section number. Reference

to a section in another PART prefix the section number by the PART letter as in "C4.8".

The novice should study PART A carefully and then peruse the table of contents. By

thumbing through PART D, he will quickly grasp the scope of OMNITAB II. He can then proceed

at his own pace to learn as much or as little as he requires. Particular attention should

be given to the discussion of self-teaching in section B4.1. Sections 1.1, 1.2, 1.3 and 1.4

of PART B and sections 1.1, 1.2 and 1.3 of PART C need to be studied before attempting any

computing. No attempt should be made to read the manual from cover to cover. Sections such

as B1.8 and B4.4 are best read after the user has gained some experience using OMNITAB II.

The descriptions of instructions in PART C are written so that the most important

information appears first and secondary information follows. The novice may wish to read

only the first few sentences and defer further reading to a later use of the instruction.

On the other hand, experienced users may find the opening remarks obvious and find the

information they need to clear up some difficulty at the end of the discussion. In several

places there is a general discussion at the beginning of a section or sub-section which

applies to a group of instructions and this should not be overlooked.

The more experienced user may find section Cll, Index Of Commands Described in PART C,

most useful. He may also wish to take advantage of some of the special features described

in PART B.

The experienced user will primarily use PART D. Section B4.1 should also be useful. He

may need only occasional reference to PART B and PART C.

If OMNITAB is easy to learn and use, why is this manual so long? There are several

reasons. First, we have tried to make the manual comprehensive so that virtually all

questions will be answered. Second, OMNITAB is very flexible. For example, one can simply

PRINT columns of numbers or one can print with a specified number of significant digits,

print arrays, print matrices and even print matrices according to a specified FORMAT.

Hence, many users' needs are satisifed. For simplicity, the user should use PRINT, but many

other options are available. This flexibility in the system necessitates a longer manual.

Third, some of the statistical instructions are simple to use, but provide a comprehensive

automatic printing which requires a detailed explanation.

TABLE OF CONTENTS

Introduction
How To Read This Manual
Table Of Contents

PART A: BEGINNER'S CMNITAB .

1. An Example.
2. Discussion Of Example
3. A Few Simple Rules .

4. A Beginning List Of Instructions
5. How To Use OMNITAB II

PART B: THE OMNITAB II COMPUTING SYSTEM

1. HOW TO USE OMNITAB II

1.1 Introduction
1 .

2

Conventions , Definitions .

1.3 A Few Simple Rules
1.4 NBS Operating System Control Cards
1.5 Numbers In Comments .

1.6 NRMAX
1.7 Variables V, W, X, Y and Z

1.8 Use Of Asterisks
1.9 The Size Of The Worksheet
1.10 Automatic Printing .

1.11 Two-word Commands
1.12 Abbreviations
1 . 13 Synonyms
1.14 Named Constants
1.15 Characters Recognized
1.16 Commands With Qualifiers .

2

.

REPEATED USE OF COMMANDS .

2.1 Numbering Instructions
2.2 Use Of PERFORM .

2.3 Use Of INCREMENT
2.4 Instructions Which Must Be Stored
2.5 Instructions Which Cannot Be Stored
2.6 Use Of BEGIN And FINISH .

2.7 Branching
2.8 Additional Comments .

3. DIAGNOSTIC FEATURES AND ACCURACY

3.1 Diagnostic Features .

3.2 Fatal Errors
3.3 Arithmetic Faults
3.4 Informative Diagnostics
3.5 Accuracy In The Use Of Instructions
3.6 Accuracy Of Instructions .

4. FOR MORE EFFECTIVE USE OF OMNITAB II 39

4.1 Self-Teaching 39
4.2 A Few Common Errors 40
4.3 Combining Sets Of Instructions 41

4.4 Use Of _FORTRAN Formats . . .
.' 41

4.5 Organizing A Set Of Instructions 42

4.6 Some Aids For Writing Sets Of Instructions 43
4.7 An Example Of Table Making 45

5. THE OMNITAB II PROJECT 49

5.1 Availability Of OMNITAB II 49
5.2 OMNITAB II Master Program SO

5.3 Implementation Of OMNITAB II 50

5.4 Operating Mode 51

5.5 Efficiency 51

5.6 Development Of OMNITAB II 51

5.7 Comments From Users 51

5.8 Notices 51

5.9 Newsletters 51

5.10 Recorded Telephone Messages 51

PART C: DESCRIPTIONS OF INSTRUCTIONS 53

List Of Commands 54

1. ENTERING AND PRINTING DATA 56

1.1 Control Instructions. 56

DIMENSION, DUMMY "L", LIST, NO LIST, NULL, CMNITAB, SCAN, STOP
1.2 Entering Data Into .The Worksheet 58

GENERATE, READ, SET
1.3 Common Printing Instructions 60

ABRIDGE, FIXED, FLEXIBLE, FLOATING, NPRINT, PRINT
1.4 Detailed Printing 63

HEAD, NEW PAGE, NOTE, NOTE1, NOTE2 , PRINT NOTE, SPACE,

TITLE1, TITLE2, TITLE3, TITLE4
1.5 Plotting Data 65

PAGE PLOT, PLOT, TITLEX, TIT LEY
1.6 Optional Forms Of Readable Printing 70

ABRIDGE, NPRINT, PRINT
1.7 Formatted Printing And Reading 74

ABRIDGE "L", FORMAT "L", NPRINT "L", PRINT "L", READ "L"

1.8 Printing Arrays And Matrices 75

APRINT, APRINT "L", MPRINT, MPRINT "L"
1.9 Punching Data Onto Cards 76

PUNCH, PUNCH "L"
1.10 Use Of Magnetic Tapes 77

BACKSPACE TAPE "L", C'EAD TAPE "L", CREAD TAPE "L" "L",

CSET TAPE "L", ENDFILE TAPE "L", READ TAPE "L", READ TAPE "L" "L",

REWIND TAPE "L", SET TAPE "L", SKIP TAPE "L",

WRITE TAPE "L", WRITE TAPE "L" "L"

2. ARITHMETIC OPERATIONS 80

2.1 Simple Arithmetic (3 Arguments) 80

ADD, DIVIDE, MULTIPLY, RAISE, SUBTRACT
2.2 More Simple Arithmetic 81

ABSOLUTE, CHANGE, SQRT, SQUARE

2.3 Logarithms, Exponentiation 82
ANTILOG, EXPONENTIAL, LOGE, LOGTEN, NEGEXPONENTIAL

2.4 Trigonometric Functions 83
COS, COT, SIN, TAN, COSD, COTD, SIND, TAND, ACOS, ACOT, ASIN, ATAN,
ACOSD, ACOTD, ASIND, ATAND, COSH, COTH, SINH, TANH,
ACOSH, ACOTH, ASINH, ATANH

2.5 Triple Operations 86
2.6 Data Summarization 89

ACCURACY, FRACTIONAL, INTEGER, ROUND,
PARSUM, ROW SUM, SUM,

EXPAND, PARPRODUCT, PRODUCT,
AVERAGE, MAXIMUM, MINIMUM, RMS

2.7 Complex Arithmetic 95
CADD, CDIVIDE, CMULTIPLY, CPOLAR, CRECTANGULAR, CSUBTRACT

3. DATA MANIPULATION 97

3.1 Defining Operations........... 97

COUNT, DEFINE, ERASE, RESET, RESET "V"
3.2 Moving Data 99

DEMOTE, DUPLICATE, EXCHANGE, MOVE, PROMOTE
3.3 Manipluative Operations 102

CENSOR, CLOSE UP, FLIP, INSERT, SEPARATE, SHORTEN
3.4 Sorting Data 105

HIERARCHY, ORDER, SORT
3.5 Search Operations 106

MATCH, SEARCH, SELECT

4. STATISTICAL ANALYSIS 110

4.1 Elementary Analysis........... 110
FREQUENCY, HISTOGRAM, NHISTOGRAM, RANKS

4.2 Analysis Of One Column Of Data .' 115

STATISTICAL, SSTATISTICAL
4.3 Analysis Of Groups Of Data 122

ONEWAY, SONEWAY
4.4 Analysis Of A Two-Way Table 127

TWOWAY, STWOWAY
4.5 Regression 138

FIT, POLYFIT, SFIT, SPOLYFIT
4.6 Correlation 155

CORRELATION, SCORRELATION
4.7 Probability 163

F PROBABILITY, UNIFORM RANDOM
4.8 References For Section 4 164

5. NUMERICAL ANALYSIS 166

5.1 Special Integrals 166
CERF, ELLIPTICAL FIRST, ELLIPTICAL SECOND, ERROR,

STRUVE ONE, STRUVE ZERO
5.2 Polynomials 168

HERMITE, LAGUERRE, LEGENDRE, NORMLAGUERRE , TCHEBYSHEV, UCHEBYSHEV

5.3 Iteration '. 171

I SETUP, ISOLATE, ITERATE
5.4 Analysis 175

HARMONIC, INTERPOLATE, MAXMIN, SOLVE
5.5 Integration 179

GAUSS QUADRATURE

6. REPEAT MODE 180

6.1 Repeated Execution 180
BEGIN, FINISH, PERFORM

6.2 Incrementing Instructions 181
INCREMENT, RESTORE

6.3 Branching, Three Arguments 182

COMPARE, IFEQ, IFNE
6.4 Branching, Two Arguments 184

IFEQ, IFGE, IFGT, IFLE, IFLT, IFNE

7. ARRAY OPERATIONS 186

7.1 Arithmetic 186
AADD, ADIVIDE, AMULTIPLY, ARAISE, ASUBTRACT

7.2 Data Manipulation 191

ADEFINE, AERASE, AMOVE, ATRANSPOSE
7.3 Summarization 193

AAVERAGE, ACOALESCE
7.4 Properties Of An Array 195

APROPERTIES, SAPROPERTIES
7.5 Printing 198

APRINT, APRINT "L"
7.6 Matrix Synonyms 198

8. MATRIX OPERATIONS 199

8.1 Defining Operations 199
MDEFINE, MDIAGONAL, MERASE, MIDENTITY

8.2 Moving Operations 200

MMATVEC, MMOVE, MTRANSPOSE, MVECDIAGONAL, MVECMAT
8.3 Matrix Arithmetic 203

MADD, MKRONECKER, MMULTIPLY, MRAISE, MSCALAR, MSUBTRACT

8.4 Special Matrix Multiplication......... 206

M(AD), M(AV), M(DA), M(V'A), M(X'X), M(XX'), M(X'AX), M(XAX')

8.5 Matrix Analysis 210

MEIGEN, MINVERT, MORTHO, MTRIANGULARIZE

8.6 Properties 217

MPROPERTIES, SMPROPERTIES
8.7 Printing 222

MPRINT, MPRINT "L"

9. BESSEL FUNCTIONS 224

9.1 First And Second Functions Of Order Zero And One 224

BJONE, BJZERO, BYONE, BYZERO
9.2 Modified Functions••••• 225

BIONE, BIZERO, BKONE, BKZERO
9.3 Modified Functions With Extreme Valued Argument 226

EXIONE, EXIZERO, EXKONE, EXKZERO

9.4 Complex Functions; Angle = tt/4 (Kelvin Functions) 227

KBIONE, KBIZERO, KBKONE, KBKZERO

9.5 Complex Functions With Extreme Valued Real Argument (Kelvin Functions). 228

KEXIONE, KEXIZERO, KEXKONE, KEXKZERO

9.6 Complex Functions With Arbitrary Angle, 0<A<Tr/2 228

CIONE, CI ZERO, CKONE, CKZERO

9.7 Complex Functions With Extreme Real Argument 229

CEIONE, CEIZERO, CEKONE, CEKZERO

9.8 Zeros Of Bessel Functions 230

ZEROS BJONE, ZEROS BJZERO

9.9 Bessel Functions Of Order n
BESIN, BESJN, BESKN

9.10 Integral
INTJO

10. THERMODYNAMICS
10.1 Temperature Scale Conversion

CTOF, FTOC
10.2 System Of Units

CGS, SI

10.3 Molecular Weight
ATOMIC, MOLWT

10.4 Properties Of State .

BOLDISTRIBUTION, EINSTEIN, PARTFUNCTION, PFATOMIC, PFTRANSLATIONAL

11. INDEX OF COMMANDS DESCRIBED IN PART C

PART D: LIST OF INSTRUCTIONS (arranged alphabetically)

A, Array Operations
B

C

D, E, F
G, H, I

K, L, M
Matrix Operations
N, o, P

R
S
T, 'U

W, z

231

232

233

233

233

234

234

238

241

243
244

245
246
247

248

249
250
251

252
253
254

PART A

BEGINNER'S OMNITAB

The National Bureau of Standards OMNITAB II computing system is designed to make
computing easy, accurate and effective for scientists who are not programmers. OMNITAB is

most useful for numerical analysis, data manipulation and statistical analysis. PART A is a
compact, simple introduction to OMNITAB for people who have had no experience using a large
computer. The material presented can be digested quickly and then the reader will be
prepared to use OMNITAB and a computer to perform any set of calculations that can be done
using a desk calculator plus a number that can not be done easily with a desk calculator.
Only the bare essentials are described and no attempt is made to give a complete description
of the OMNITAB system. Complete details are given in the other parts of this manual. PART
A stands alone as a self-contained section. The discussion centers around an example. The
example was selected because it is interesting and sufficiently non-trivial to be

instructive. Thus, we could not avoid introducing technical material which is not germane

to the explanation of OMNITAB. The computations are actually simple and the reader can
easily gloss over technical expressions such as "cumulative distribution" without impairing

his train of thought.

1. An Example
2. Discussion Of Example
3. A Few Simple Rules
4. A Beginning List Of Instructions
5. How To Use OMNITAB II

1. An Example .

"It has been noticed by astute observers that well used tables of logarithms are
invariably dirtier at the front than at the back. Upon reflection one is led to inquire
whether there are more physical constants with low order first significant digits than
high." Thus, starts a paper by Pinkham (1961), ("On the distribution of first significant
digits." Ann. Math. Statist., 32, 1223-1230). This provides the background for an
interesting example to illustrate the basic features of the OMNITAB II computing system.
Pinkham gives a theoretical discussion of why and to what extent the cumulative distribution
of initial digits compares with the law log(n+l), here log means log to the base ten. By
the law logCn+1) and cumulative distribution we simply mean that the digit 1 should occur
100xlog(2) percent of the time, both the digits 1 and 2 should occur 100xlog(3) percent of
the time, the digits 1, 2 and 3 should appear 100xlog(4) percent of the time, etc. (The
reader should not be distracted by the statistical aspects of this example.)

Let us examine the initial digit of the values of the 50 fundamental physical constants
given in NBS Handbook 102, pages 42 and 43, (ASTM Metric Practice Guide, U. S. Government
Printing Office) and see how well the law log(n+l) behaves. The fundamental physical
constants are the Speed of light in vacuum, Faraday constant, Gravitational constant, etc..
The initial digits of the 50 values given in Handbook 102 are:

2, 1, 4, 6, 9, 5, 1, 1, 1, 1, 9, 2, 6, 1, 7, 1, 1, 5, 1, 5, 4, 1, 2, 3, 1,

2, 1, 5, 2, 7, 6, 2, 4, 2, 4. 9, 5, 1, 2, 2, 1, 4, 8, 2, 1, 3, 1, 2, 5, and 6.

One thing that we can do with these data is construct a frequency distribution showing
the number of times 1 appears as the initial digit, the number of times 2 appears as the
initial digit, and so on. We can then compare these observed frequencies with the expected
(or theoretical) frequencies. To do this statisticians sometimes compute a statistic called
chi-squared from the formula:

T = SUM (observed -expected) 2/expected.

Here, the expected individual frequencies are derived from the cumulative relative
frequencies by using the relation 50x(log(n+l)-log n) . The simple calculations required to

compute T are laid out below in a familar form. It is common practice in laboratories to

write down the results of hand calculations on a multi-columned pad of ruled paper, or

worksheet, as simulated in the following table. The basic data, in this case, are the

observed frequencies in column (2). After this, calculations were performed on successive

columns and the results put in columns (3) through (10)

.

(1)

Obs'd n+1 log log diff. exp'd diff. T

Freq. (n+D (n) (4) -(5) 50.x(6) (2) -(7) (8)x(8) C9)/(7)

(2) (3) (4) (5) (6) (7) (8) 0) (10)

16 2 .3010 .0000 .3010 15.05 0.95 0.902 0.06

11 3 .4771 .3010 .1761 8.80 2.20 4.840 0.55

2 4 .6021 .4771 .1250 6.25 -4.25 18.062 2.89

4 5 5 .6990 .6021 .0969 4.85 0.15 0.022 0.00

5 6 6 .7782 .6990 .0792 3.96 2.04 4.162 1.05

6 4 7 .8451 .7782 .0669 3.35 0.65 0.422 0.13

7 2 8 .9031 .8451 .0580 2.90 -0.90 0.810 0.28

8 1 9 .9542 .9031 .0511 2.56 -1.56 2.434 0.95

9 3 10 1.0000 .9542 .0458 2.29 0.71 0.504 0.22

50 1.0000 50.01 -0.01 6.13

We might expect the initial digits 1, 2, and 3 to appear approximately one third of the
time, but the law log(n+l) = log(4) = 0.6, says we should expect them to appear closer to
two thirds of the time. Note, the value of T = 6.13 is not at all unusually large thus
indicating the law log(n+l) is reasonable in this case. (This is actually a chi-squared
goodness-of-fit test which is explained, for example, in "Introduction to Statistical
Analysis," W. J. Dixon and F. J. Massey, McGraw-Hill, p 209 ff.)

If one were to ask someone to perform the above calculations using a desk calculator, it
is possible that the step-by-step instructions would be some verbalization of the headings
that appear at the top of the columns. This is pretty much what you do to write a set of
instructions in OMNITAB to have the calculations performed by a computer.

It is very helpful to imagine a large worksheet consisting of 201 rows by 62 columns.
Operations are performed on the numbers in a column by writing instructions which closely
resemble English, or at least technical English. The rules that govern the writing of the
instructions are fairly simple and permit a wide latitude in form. The most important rule
is one which enables the computer to distinguish between column numbers, such as 5, and
constants, such as 50.0 in an instruction. All column numbers must be written without a
decimal point and all constants must have a decimal point. Imagine for a moment, if you
will, writing out a set of step-by-step instructions to perform the above computations and
now examine a set of OMNITAB instructions to perform these calculations.

OMNITAB 5/19/70 distribution of initial digit of physical contants
SET initial digit of physical constants in column 21

2146951111926171151541231
215276242495122148213125 and 6.0

GENERATE n from 1.0 in steps of 1.0 to 9.0, put in column 1

FREQUENCY distribution for column 21, using -9 cells, put obs'd freq in column 2

ADD 1.0 to column 1 and put result in column 3

LOGTEN of column 3, put in column 4

LOGTEN 1, 5

SUBTRACT column 5 from column 4 and put in column 6

MULTIPLY column 6 by 50.0 and put expected frequencies in colomn 7

SUBTRACT col 7 from col 2 and put differences in col 8

SQUARE column 8 and put in column 9

DIVIDE column 9 by column 7, put in column 10
SUM column 10 and put chi-squared in column 11

PLOT relative cumulative frequencies in column 5 against n in column 1

PRINT columns 1, 2, 7, 8, 10 and 11

STOP

The results obtained by using this set of instructions are shown on pages 4 and 5. The

OMNrTAB results differ in a few respects from the hand-calculated results above. The

frequency distribution was computed, a plot of the theoretical, cumulative distribution is

given and the amount of information printed is slightly different. Now, let us examine the

set of instructions in some detail.

2. Discusssion Of Example .

Each instruction must be punched on a single Hollerith data processing card which has 80

columns. The first word of each instruction must be one of the valid command names in the

OMNITAB vocabulary. To emphasize this point, the command name is written in capital

letters. On the remaining portion of the card, only the numbers are important and required.

The words in lower case letters are descriptive words which help the user understand the

meaning of the instruction, but are ignored by the computer for computing purposes. (On a

punched Hollerith card, only capital letters are possible.) Each instruction is interpreted

and executed by the computer as it is encountered. Let us examine the instructions one by

one in some detail.

I

s

F-H o o o o o o o o o
=3- =) ^ ** *3- * ^i- ^r m-

I-l tO tO tO to tO to to to toH ^H .-H .-1 rH
CO COCOOO CO CO CO CO CO COs CN] CN] CNl CN) CN] cni cni cni cn)o tH 1—(T—1 I—I 1—

1

i—1 i—1 i—1 rH
cj

o
\o \o \o ^o \o ^o\o \0

3
CJ cj

1—1 CO i—

1

*d- tO LO LO CD
B-. >OHLn cni o O i—1 LO COC HNO *0 ^i- lo ai to vo

r-- to lo CN] CNJ LO Ol i—| LOH t-- ^f CNl Ol t-H CN) O \D *0
Ol t^ t-^ *tf CM t-- Ol CO i—

1

cj LO ^i- CO O LO CM r~~- *3" CNJ

Q o
c_>

O LO CO o o I—1 CN] Ol CN]

CNl l-H

3
H to LO LO CD tO
l-H CO NO CN] t^ NO to LO CN] o O2 o r~- \o oi r-~ CD t-N- \0 LO
>—

<

o to to oi to vO Ol CN] CN]
lo -* oi si- oi OflvDH

Wh CO LO <0 * o CN) CJl [^ CNlo ^f Ol ^1- LO «=f LO Ol LO i—

1

§
^. Ol t-H CN] tH o o co lo r-^

J CN] ^J- cn)
1 i-H

)—

H

O 1

S U
CQ
l-H

g 00 t~~ to r-^ LO CN] O ^
i>- oi cni \o O CN] oi r-- o *s-

CO a ^ to CD yD KIOIMIN^LOOl LO O to LO O COQ H^no lo ai r~- oi r-~ r^
L^C^t^-l/1 Nt cn t/i co

g OCON co oi tO CO LO CN)

o g LO CO vO ^j- to tO CNl CN) CN)
t-- 3 rH
-

—

o
oi u
LO

O o o o o o o
CN] o o o o o o o o oo o o o o O O O CD

£> CD O O O CD CD O CD CD
s O CD CD CD O O O O O
E-i O O CD O O CD O CD CD
i—iz

1
O CD O CD O O O CD O

^ \0 *—1 CN] LO VO "* CN] ,—1 tOs .-J i—l i—

1

ou

CD O O o o O CD CD O
1—1 O CD CD o o O CD O OO CD O CD O CD CD CD OO CD O o o O O CD O

CD CD O o o CD O CD CDO O O c o oooo
2 O CD O o o CD CD CD CD

-1o
—1 CN] to - LO oiNcoai

CJ

H
l-H

CJM
o

co

Q

w o iQ CJH„h5:ci,> S O i-| oHSJtfha co a, cx co

OMNITAB is the first instruction of any set. The date and other information on the card
serves as a title which appears at the top of each page that is printed, along with the
page number, as shown on pages 4 and 5. The OMNITAB instruction does a certain amount
of initialization; in particular, it sets every entry in the 201 x 62 worksheet equal to
zero.

SET is one of the instructions to get (enter) data into the worksheet. All the data that
follow are read into the designated column of the worksheet until an OMNITAB instruction
is encountered. The number 2 goes into row 1 of column 21, the number 1 into row 2, 4

into row 3, etc., and finally 6 into row SO. Note, we have not indicated anywhere that
50 numbers have to be entered. The computer automatically determines the number 50 for
us. Considerable freedom is allowed in punching the numbers on a card. At the end of
the second data card 6.0 is written, whereas all the other numbers do not have a decimal
point. It is obvious when you read this sentence that 6 and 6.0 represent the same
quantity and so they do when data are entered by OMNITAB. The user is free to put the
decimal point in a data value or leave it out. Any words, that are not part of the
OMNITAB vocabulary, can be entered anywhere on the card as comments, e.g. the word
"and" at the end of the second data card. Also, data may start and appear anywhere on
the card. All that is required is a comma, space or word to separate the numbers. One
of the instructions for entering data, such as SET, must be used before any arithmetic
is done.

GENERATE is another of the instructions for getting data into the worksheet (computer) . The
first number, 1.0, goes into row 1 and each succeeding row is obtained by adding the
increment, the second 1.0, to the preceding row. The process is continued until the

final value is reached, the third number 9.0 Thus, we obtain the numbers 1.0, 2.0 ...

9.0 in the first nine rows of column 1. In contrast to SET, the constants in this

instruction must be written with a decimal point. Some people use the mathematical
notation with parentheses as in

GENERATE 1.(1.)9. in column 1

FREQUENCY creates a frequency distribution using the specified number of cells or classes.

This instruction produces the numbers in column (2) of the hand- calculated table of

section 1. It gives the number of times (frequency) the digit 1 appears, the number of

times the digit 2 appears and so on.

ADD is one of the arithmetic instructions. The first two numbers can be either constants

(1.0) or column numbers which do not contain a decimal point (1). Note, ADD does not

start in the first column of the card. Any instruction can appear anywhere on the card

as long as one and only one instruction is on the card. Two cards can not be used for a

single instruction. Of course, the instruction is equivalent to

ADD column 1 to 1.0 and put result in column 3

LOGTEN is another arithmetic instruction. Note, the difference in the two LOGTEN

instructions. The words are superfluous, except for ease of reading and the first

instruction could be written LOGTEN 3,4. Although the latter form is less desirable,

the flexibility permits a great deal of freedom in writing an instruction.

SUBTRACT is clear. Notice the word "from" in the instruction which, although not necessary,

explains the structure of the instruction. The instruction

SUBTRACT 4.0 from 7.0 put in columnn 56 would put the number 3.0 into each row of

column 56.

MULTIPLY as punched on the cards listed on page 5 has the word column misspelled, but this

will not affect the execution of the instruction. The command name MULTIPLY must be

spelled correctly, but since the words which follow are ignored and are not nece-ary,
misspellings, although not encouraged, are allowed.

SUBTRACT uses the abbreviation col for column which is very common with OMNITAB users.

SQUARE is another arithmetic instruction whose meaning is clear. The results in column 8

are needed to obtain column 9, but are of no intrinsic interest. Thus, they can be
destroyed and we could have used the instruction SQUARE 8, 8. The last number in any
instruction is always a column number indicating where the results are to be put in the
worksheet after computations are completed. The results are put in the designated
column and at the same time the previous numbers are erased, but not before the
calculations are complete. The instruction ADD 1,1,1 is valid and would replace the
numbers in column 1 by numbers having twice their value.

DIVIDE one column by another column means perform division row by row. In this case, divide
the number in row 1 of column 9 by the number in row 1 of column 7 and put the result in
row 1 of column 10; divide the number in row 2 of column 9 by the number in row 2 of
column 7 and put the result in row 2 of column 10; and so on.

SUM is one of several data summarization commands. The result 6.13 is put in each row of
column 11. Some people are puzzled to learn that the same number is put in each row.
But OMNITAB works on columns of numbers and it would be more confusing to have different
rules when the result of an operation is a single number rather than a column of
numbers

.

PLOT provides a convenient graphical display of the data via the printer. The scales along
the axes of the plot are automatically determined by the computer.

PRINT is the basic instruction for obtaining printed results from the computer. Notice that
the numbers are printed in a readable form with the decimal points lined up. This is a

unique feature of OMNITAB which makes reading of results easy. The position of the
decimal point is automatically determined by the magnitudes of the numbers in a column.
Printing starts on a new page and at the top of each column appears the heading COLUMN
with the appropriate column number.

STOP is always the last instruction. It tells the computer that you have finished using the
OMNITAB system. At the same time it causes a LIST OF COMMANDS, DATA AND DIAGNOSTICS to

be printed for reference purposes.

5. A Few Simple Rules .

(1) One and only one instruction is punched on a single Hollerith card.

(2) The first word of any instruction must be a valid command name in the OMNITAB
vocabulary.

(3) Column numbers must be written (punched) without a decimal point.

(4) Constants which are part of an instruction must have a decimal point. (The decimal

point is not necessary in data that are read into the worksheet.)

(5) OMNITAB must be the first instruction.

(6) STOP must be the last instruction.

(7) Any data value less than -8191 must have a decimal point, e.g. -9328 must be

punched as -9328.0.

4. A Beginning List Of Instructions .

Each OMNITAB instruction consists of (i) a valid command name in the vocabulary such as

ADD which is usually an imperative verb, (ii) one or more arguments, or numbers, which
indicate the specific data to be operated on, e.g. the numbers 1.0, 2 and 3 in ADD 1.0,2,3
and (iii) descriptive words or phrases for the user's benefit as in ADD the number 1.0 to

column 2 and put the results in column 3. The last two, (ii) and (iii), are not always
present as in STOP. The number of arguments allowed varies from instruction to instruction
and depends on the form of the instruction. In the list below, the meaning or type of
argument allowed should be clear from the context, but to remove any doubt four conventions
are used:

(C) = a COLUMN number which must not have a decimal point
(K) = a CONSTANT which must contain a decimal point
(E) = EITHER a column number or a constant
(k) = an integer, other than a column number, without a decimal point.

SET the data on the following card(s) into column (C)

READ data into columns (C) , (C) , ... (C) one card per row
GENERATE from (K) , in steps of (K) , to (K) in column (C)

ADD (E) to (E) and put the results in column (C)

SUBTRACT (E) from (E) and put the results in column (C)

MULTIPLY (E) by (E) and put the results in column (C)

DIVIDE (E) by (E) and put the results in column (C)

SQUARE of (E) put in column (C)

SQRT of (E)
,
put square root in column (C)

ABSOLUTE value of (E)
,
put in column (C)

RAISE (E) to the (E) power and put results in column (C)

LOGTEN of (E)
,
put in column (C) the logarithm to base ten

ANTILOG of (E) put in column (C)

LOGE of (E)
,
put in column (C) natural logarithm

EXPONENTIAL of (E) put in column (C)

SIN of (E) radians put in column (C)

COS of (E) radians in column (C)

SUM all the values in column (C)
,
put result in column (C)

AVERAGE the values in column (C)
,
put result in column (C)

MAXIMUM value of column (C)
,
put in column (C)

MINIMUM value of column (C)
,
put in column (C)

DEFINE (E) into column (C)

SORT column (C) , carry along columns (C) , (C) , ... (C)

FREQUENCY distribution for column (C), using (k) cells, put in column (C)

STATISTICAL analysis of column (C)

PLOT column (C) using vertical scale against column (C) using horizontal scale
PRINT columns (C) , (C) , ... (C)

OMNITAB (this must be the first instruction)
STOP (this must be the last instruction)

5. How To Use OMNITAB II.

A list of instructions and a list of rules has been given with a discussion of how to

use them. A few additional comments about the use of instructions are now needed.

The READ instruction is similar to the SET instruction except data is entered into
several columns one row at a time. The data on the first card goes into row 1 of the
designated columns, the data on the second card into the second row and so on. For the READ
instruction you punch one card for each row of data, whereas for the SET instruction you
keep punching on a card and use only as many cards as you need to punch all the data for a
single column.

The instruction STATISTICAL analysis is one of several instructions which give an
automatic printing of a comprehensive set of results. This particular instruction prints a
frequency distribution; 43 different statistics on measures of location, measures of
dispersion, confidence intervals, linear trend statistics, tests for non- randomness,
deviations from mean and other statistics; and the data with ranks, deviations from the mean
and differences between adjacent ordered observations. An example is given in PART C.

The instruction DEFINE can be used to put a single value into every row as in DEFINE 2.0
into column 3, or it can be used to move a column from one part of the worksheet to another
as in DEFINE column 2 into column 3. The instruction SORT puts data in increasing order and
at the same time carries along data from the other columns which are specified. If the
baseball batting averages .285, .310, .239, .268 and .293 are in column 36 and the number of
walks 18, 26, 5, 3 and 12 are in column 38, then the instruction

SORT column 36 and carry along column 38

would change the numbers in column 36 to .239, .268, .285, .293 and .310. The numbers in
column 38 would be changed to 5, 3, 18, 12 and 26.

The user may make errors, but they usually can be easily spotted and corrected. If a
command name is not spelled correctly or has the wrong number or type of arguments, a FATAL
ERROR will result and the instructions which follow are not executed. A message indicating
the type of error is given in the LIST OF COMMANDS, DATA AND DIAGNOSTICS which is printed
after the execution of the last instruction. Sometimes arithmetic errors occur as in
attempting to take the square root of a negative number. This results in a diagnostic also,
but does not affect the execution of subsequent instructions. A complete list of possible
errors is given in PART B.

In addition to the OMNITAB control cards OMNITAB and STOP, a few control cards are
necessary for accounting and administrative purposes. These cards differ from one computer
center to another. Specific details should be obtained from your computer center. MBS
users can find the necessary information in PART B. Information on how to punch cards, send
cards to the computer to be run and receive printed results should also be obtained from
your computer center.

The material provided in this part of the manual will enable you to solve a number of

different problems easily and quickly. However, we have only scratched the surface of what
can be done using OMNITAB. After using OMNITAB for awhile the beginning user will have many
questions.

— Are there other ways of printing data?— Can I modify the printing to have titles, column headings, etc.?— Can I choose the scales of a PLOT?— Can I work with matrices rather than columns?— Can I invert a matrix?— Can I do any numerical analysis such as interpolation?— Can I do more sophisticated statistical analysis using least squares?— Can I handle more than 201 ^ira values?

The answer to each of these questions is "Yes, in several different ways." The answers are

given in the remainder of the manual. The beginner should not be overwhelmed, but should

proceed at his or her own pace. Examine the table of contents and glance through the

complete LIST OF INSTRUCTIONS (PART D) at the end of this manual. In particular, study

carefully the section on self-teaching. Then proceed to learn the material as needed and

don't try to read it all at once. PART A stands alone as a self-contained section.

PART B

THE OMNITAB II COMPUTING SYSTEM

A general description of the National Bureau of Standards OMNITAB II computing system is

given with illustrations. General features are described. Details on specific instructions
are given in PART C.

1. How To Use OMNITAB II

2. Repeated Use Of Commands
3. Diagnostic Features And Accuracy
4. For More Effective Use Of OMNITAB II

5. The OMNITAB II Project

11

1. HOW TO USE CMNITAB II

1.1 Introduction

CMNITAB is a highly user-oriented general -purpose computing system. It is especially
suited to problem solving in areas of data analysis, data manipulation, statistical analysis
and numerical analysis.

The name CMNITAB comes from omni and tab . The former because it is one in a series of
omnibus programs and the latter because it can handle a wide variety of tabular data; see
Hilsenrath et al. (1966).

The central theme behind CMNITAB is that considerable extra effort should be expended by
specialists in writing the master program so that users have only to exert a minimum amount
of effort to use the computer easily and effectively. Every effort is made to utilize the
computer to free the user from annoying, tiresome chores and to enable him or her to do the
type of problem solving and data interpretation that is normally required in the chosen
field.

A major consequence of this theme is that computing is done in a natural way by writing
instructions to the computer in simple English sentences or abbreviations thereof. The
simplicity of the system makes a more direct and immediate access to the computer possible
for both non-programmers as well as experienced programmers.

It is very helpful to imagine a large worksheet consisting of 201 rows and 62 columns.
Operations are performed on the numbers in columns by writing a series of instructions which
closely resemble English or at least technical English sentences. Each instruction is

punched on a single Hollerith card which lias 80 columns. Each instruction is executed
(except as in section 2) as it is encountered and interpreted by the computer. Hence, the
order of the instructions controls the flow of computations in much the same way that hand
calculations are performed and recorded on a multi-columnar pad. The instruction

MULTIPLY column 3 by 6.2 and put the result in column 5

causes the numbers in each row of column 3 to be multiplied by 6.2 and the results to be
placed in the corresponding rows of column 5. The numbers which were in column 5 are
replaced by the new results (only) after the operation is complete. Complete details on the
writing and general use of instructions are given in the following sections.

In PART A a simple compact introduction to CMNITAB was given for the novice. In some
instances there was a slight over-simplification. In the remaining portions of this manual
details are given for both the novice and the experienced user. Some of the points made in
PART A will be slightly modified to make them agree with the actual characteristics. It is

assumed that the reader is familiar with the material in PART A.

1.2 Conventions, Definitions .

An CMNITAB instruction is the information punched on a single Hollerith card as in:

ADD 1.0 to column 24 and put the result in column 37 $ Y=X+1

For clarity of exposition, an instruction is said to consist of one or more of the
following:

12

(a) The command: ADD
(b) Arguments: 1.0, 24 and 37
(c) Descriptive words: to column, and put the result in column
(d) Comments: $ Y=X+1

Formerly, the terms command and instruction were used interchangeably, but here the
above distinction is made. The command must be a valid name in the OMNITAB vocabulary; see
PART D for a complete list. If the command is misspelled or is in any way incorrect the
following FATAL ERROR will occur

NAME NOT FOUND IN LIBRARY

A complete discussion of error messages is given in section 3. All commands, except those
listed in sections 1.11 and 1.16 consist of a single word. If the name has more than six
letters, only the first six are necessary. For example, the command

STATISTICAL analysis

is often abbreviated to

STATIS

The word "analysis" is not part of the command, but may be used to clarify the meaning of
the command.

Arguments are numbers which are either constants, row numbers, column numbers, etc.
which indicate what specific numbers the operation (ADD) is to work on. Arguments must be
separated from each other. This can be done by either (a) using one or more blank spaces,
(b) using a comma or (c) using a descriptive word or phrase.

The descriptive words are helpful for understanding the meaning of the instruction, but
are not used by the computer except in the printing of the LIST OF COMMANDS, DATA AND
DIAGNOSTICS which is given at the end of the execution of a set of instructions . The use of
comments is discussed in section 1.5.

Instructions are of three types: executable, non- executable and stored. Executable
instructions are those which perform some type of operation immediately as in ADD. Non-
executable instructions are used in detailed printing, for example FORMAT. The use of
stored instructions for repeated execution is discussed in section 2

.

In addition to instructions, the two other types of punched cards used with OMNITAB are

data cards and operating system control cards. The operating system control cards are

described in section 1.4.

Throughout this manual commands are written in capital letters. Non-essential

descriptive words in an instruction are written in lowercase letters. No numerals are used
in a command except in TITLE1, TITLE2, TITLE3, TITLE4, NOTE1 and N0TE2.

Some commands have a qualifier denoted by "L", where "L" indicates any one of the

letters A, B, C, D, E or F; see section 1.16. These qualifiers are used to distinguish

between formats and tapes (except in DUMMY "L") ; see section 4.4. The qualifier (without

quotation marks) is part of the command. One blank space must precede and follow the

qualifier without any additional characters. All of the magnetic tape operation commands

have either one or two qualifiers. One instruction, RESET "V", has the qualifier "V", where

"V" denotes the letter V, W, X, Y or Z; see section 1.7.

Parentheses enclosing a letter indicate the type of argument allowed in an instruction.

Lower case letters always represent integers which must be written without a decimal point.

Examples are (r) = the number of rows and (c) = the number of columns. Capital letters are

used as follows:

13

(C) = a COLUMN number which must be written without a decimal point
(E) = EITHER a column number or a constant
(K) = a constant which must be written with a decimal point
(N) = an instruction NUMBER with or without a decimal point
(R) = a ROW number which must be written without a decimal point

Constants can be written in many different ways. The number 123.4 can be written simply
as 123.4 or it can be written using some kind of notation indicating the size of the

exponent as in 1.234E+2, 1.234E2 or even 1.234+2.

In some instructions, like PRINT, it is clear from the context that the arguments must
be column numbers. In some instructions, like ADD, the form of the instruction indicates
that either constants or column numbers may be used as arguments. To make the distinction
between constants and column numbers unambiguous, constants are always written with a

decimal point and column numbers are always written as integers without a decimal point.

The word OMNITAB is used for several different purposes and some ambiguity may result.

Also, there has been some discussion and comment on whether OMNITAB is a program, a language

or even a statistical package. To alleviate these difficulties, the following definitions

will be used:

OMNITAB master program : The entire set of ANSI FORTRAN subprograms which exists on

magnetic tape or punched cards

.

OMNITAB language : The vocabulary of imperative words and the grammar, syntax and rules

for its use.

OMNITAB vocabulary : The list of commands, largely imperative verbs, which comprise the

first word of an OMNITAB instruction.

OMNITAB instruction : The combination of a command from the vocabulary, numerical

constants and column numbers, with or without intervening "noise" words.

OMNITAB set of instructions : A set of instructions beginning with the command OMNITAB,

including data cards, written by a user to solve a specific problem.

OMNITAB philosophy : The strong user-oriented features of OMNITAB such as automatic

printing and printing of error bounds, without which OMNITAB could exist, but would be

substantially less effective.

OMNITAB project : The continuing activity designed to make the use of OMNITAB more

effective. These activities include maintenance of the system, programming of new

features, operation of a feedback system from users, distribution of program tapes,

preparation of the OMNITAB Newsletter, and planning and coordination of workshops,

seminars and lectures.

The word OMNITAB by itself may signify any of the above, but usually refers to the

OMNITAB computing system which encompasses all of the above.

1.3 A Few Simple Rules .

A few restrictions are imposed upon the user by the rules below. However, the user is

allowed wide latitude in writing instructions or data cards. For example:

(a) Any instruction can appear anywhere on the card. Punching does not have to start

in card column 1.

14

(b) Data can be spaced in any way on a card and descriptive words or phrases (without
numerals) may appear anywhere on the card. If a descriptive word is used at the
beginning of a data card, it must not be a valid name in the OMNITAB vocabulary.

(c) The extent to which descriptive words are or are not used in an instruction is up
to the user. Liberal use of descriptive words is often helpful.

(d) When the last argument in an instruction is a column number, as is usually the
case, indicating where results are stored, the column number does not have to

differ from column numbers previously used in the instruction. E.g.,

SQUARE 8,8

is a valid instruction and would replace all the numbers in column 8 by the same

numbers squared.

(e) The length of a column is usually automatically set when data are entered into the

worksheet and need be of no concern to the user. For a few exceptions see section

1.6.

(f) The master program automatically makes the distinction between data and

instructions.

(g) FORMAT statements are not required. They may be used, if desired.

The following is a short list of simple rules which apply in general. Rules which apply

only to a single instruction are given with the description of the instruction in PART C.

(1) One and only one instruction is punched on a single Hollerith card.

(2) The first word of any instruction must be a valid command in the OMNITAB

vocabulary.

(3) Column numbers must be written (punched) without a decimal point.

(4) Constants which are part of an instruction must have a decimal point. (The decimal

point is not necessary in data that are read into the worksheet.)

(5) OMNITAB must be the first instruction in any set of instructions.

(6) STOP must be the last instruction.

(7) The maximum number of arguments allowed in a single instruction is 100.

(8) Arguments must be separated from each other by a blank space, comma, or any

character other than an asterisk or a dollar sign.

(9) All matrix and array operation commands, except AAVERAGE, ACOALESCE and MMATVEC,

use the first four arguments to determine the location and size of the array or

matrix.

(10) The use of asterisks, see section 1.8, is governed by special rules. In

particular, a space cannot be used for a conrna to separate numbers between

asterisks. An asterisk should not be used in a descriptive word or phrase.

(11) The first instruction following a data card must not be a stored instruction.

(12) Any data value less than -8191 must have a decimal point, e.g., -9328 must be

punched as -9328.0.

15

(13) Data must be within the range of the computer. For NBS users this means
approximately 11 digits or less for integers (2

35
-l) and floating-point numbers

should be less than 10 38
.

1.4 NBS Operating System Control Cards .

OMNITAB has two essential control commands OMNITAB and STOP, which are discussed in PART
C. In addition, control cards are required by the computer center for administrative and
accounting purposes. Users of any computer other than the NBS computer should consult their
computer center staff for assistance. Users of the NBS computer have to use the following
three control cards. The symbol, 8, represents the multiple 7-8 control punch which must be
in card column 1.

8P RUN NAMEXX,00000,MT,MP,MC
80 XQT (ZMNITAB

(your set(s) of OMNITAB instructions)

8 FIN

On the first card:

P = Priority which is either the letter A, B, C or D as you choose. The priority
affects (i) the computing cost, (ii) how quickly your sets of instructions will be processed
and (iii) sets limits on the execution time, number of pages that can be printed, number of
cards that can be punched and number of magnetic tapes that can be used. (If a blank space
appears, D priority is assumed.)

00000 = the five digit task number assigned to you by the Computer Services Division.

NAMEXX = the six character identification assigned to you by the Computer Services
Division.

MT = the maximum number of minutes of computing time expected.

MP = the maximum number of pages to be printed.

MC = the maximum number of cards to be punched.

If the priority, name or task number is incorrect, your computer run (set of

instructions) will be aborted. In other words, the computer will not accept your set of

instructions to be processed. Similarly, if there is a conflict between the priority and

either MT, MP or MC, then the run will be aborted. If MT, MP or MC is reached, your

computing, printing or punching will all cease and you will only get back whatever has been
produced up to this point.

Usually, 1 or 2 is used for MT. A great deal of computing can be done in 1 minute.

Occasionally several minutes are needed, particularly if several sets of instructions are

being used or if an iterative procedure is being used. The computing time almost never
exceeds 10 minutes. The run time can now be given to the nearest tenth of a minute. Hence,

the following are all acceptable times: 0.6, 1, and 2..

The number of pages printed is often less than 50 and rarely greater than 100. Keep in

mind that about five extra pages are printed by the executive system for administrative

purposes.

Usually cards are not punched and MC can be left blank. However, when you do have cards

to be punched, be sure to set MC to equal or exceed the number of cards that have to be

punched

.

16

The priority establishes limits on MT, MP, and MC as follows:

PRIORITY MAXIMUM TIME MAXIMUM PAGES MAXIMUM CARDS MAXIMUM TAPES

A 2 min. 75

B 5 min. 125 500 3
C 10 min. 175 500 5

D unlimited 2500 20,000 7

A slash is used to distinguish the letter, 0, from the number zero. If the letter, 0,
in the second card column of the second system control card is missing, overflow and
underflow diagnostics will be printed by the executive system. These messages are sometimes
informative, but are usually difficult to relate to CMNITAB.

In addition to the above system control cards, the user must precede all cards by a
completed FORM NBS-112, Computer Services Instruction Card. An example of a completed form
(with fictitious data) follows. This white card immediately precedes the "RUN" card.

REEL NO
mm?#\

NUMBER SCRATCH TAPES

NEEDED

[] TPR OUTPUT

fj PRINT & RELEASE

fJPRINT a SAVE

REEL izo not white

_lJM4M
MAX. RUN TIME / MIN.

MAX. PRINT OUT So _ PAGES

MAX. CARDS OUT _ CARDS

7/JO/70
PICKUP 2*9 FLOOR

f_~J
MAIL TO:

SPECIAL INSTRUCTIONS

X PICKUP 3™ FLOOR

OPERATOR COMMENTS

U.S. bEPSRIMCNT OF COMMF.RCE
NATIONAL 11UREAU OF STANO'RDS

COMPUTER SERVICES INSTRUCTION CARD

"~l

1.5 Numbers In Comments .

Explanatory words or phrases are always allowed in an instruction, i.e.,

SQUARE 1,2

can be written as

SQUARE column 1 and put the results in column 2

If numbers are used in comments, additional steps must be taken to avoid having the
numbers mistaken for arguments. A number in a comment should always be at the end of the
instruction and follow the last argument. If there are only a few such numbers, the
simplest procedure is to precede the comment by a dollar sign, $, as in:

ADD 1.0 to column 24 and put in column 37 $ Y=X+1

17

The dollar sign is a signal to the computer to ignore all information which follows it. The
dollar sign can be used to make an entire card a comment card by putting the dollar sign
first, usually in the first card column, as in:

$ the following group of instructions computes the geometric mean.

If numbers in comments occur in many cards, a simpler procedure is to use the
instruction SCAN. (See PART C.) The instruction

SCAN only the first (c) card columns on the following cards

instructs the computer to ignore all information on any card that follows beyond the c-th.
column.

1.6 NRMAX

NRMAX stands for maximum number of rows. It is the number of rows operated upon by an
instruction. It is not the number of rows in the worksheet. Usually the user need have no
concern about NRMAX. Its value is usually automatically set by one of the instructions for
entering data into the worksheet (READ, SET, GENERATE). In the instructions:

CMNITAB
GENERATE 1.(1.)5. in column 1

ADD 1. to column 1 and put in column 2

PRINT columns 1 and 2

STOP

the command CMNITAB automatically sets the number of rows in the worksheet equal to 201 and
NRMAX equal to zero. The command GENERATE automatically sets NRMAX to equal 5. Hence, when
the ADD instruction is executed, only the first five rows are operated on. The numbers 2.,

3., 4., 5., and 6. will be put in the first five rows of column 2 and the remaining rows
will have the value zero which was set by the command CMNITAB.

The value of NRMAX may be changed, but not necessarily, only by the following
instructions

:

Increase NRMAX Decrease NRMAX Either Increase or Decrease NRMAX

DEMOTE ERASE (with no arguments) ISOLATE
DUPLICATE FREQUENCY (usually) I SETUP
GAUSS QUADRATURE CMNITAB (NRMAX=0) ITERATE
GENERATE SHORTEN RESET nrmax
INSERT
READ
SET
CSET TAPE "L"
READ "L"
READ TAPE "L"
READ TAPE "L","L"
SET TAPE "L"

1.7 Variables V, W, X, Y and Z.

If a constant, such as 3.7, is to be used repeatedly, it is sometimes convenient to give

it a name. This is particularly true if the constant is used often in a set of

instructions, but the value of the constant is changed when the set of instructions is used
on different days. Then the value of the constant has to be changed in only one place
rather than many different places. Five variables are available for this purpose; V, W, X,

Y and Z. The value of a variable is set by using the instruction

18

RESET "V"

where the qualifier "V" can be either V, W, X, Y or Z. For example, we could use

RESET W to 3.7

When a variable is referenced in an instruction, it must be enclosed by asterisks; see

section 1.8. The instruction

ADD the value *W* to column 2 and put in column 3

adds 3.7 to each value in column 2 and puts the results in the corresponding rows of column

3.

If more than 5 constants are needed one can put all the constants in a column and then

use asterisks as described in section 1.8. Actually, the decimal point is not necessary as

the instruction implies that the number after the qualifier has to be a constant, i.e.,

RESET X to 12 is automatically converted to RESET X to 12.0.

1.8 Use Of Asterisks .

(a) Three asterisks can be used to designate an implied "through". In PRINT 1 *** 8

the three asterisks indicate that we want to use all the integers between 1 and 8. This is

merely a shorthand way of writing PRINT 1,2,3,4,5,6,7,8. The numbers on either side of the

three asterisks must always be integers. The three asterisks must not be separated. They

must not be used to mean "thru" when "thru" is implied by the instruction as in the

instructions PERFORM, ROW SUM, and SUM. The number on the left of the three asterisks

should be less than or equal to the the number on the right, i.e., PRINT 8 *** 1 should not

be used.

(b) Single asterisks enable you to use a number in a particular part of the worksheet

without actually knowing its specific value. The instruction

ADD value *2,3* to column 17 and put in column 35

adds the number which is in row 2 of column 3 to every number in column 17 and puts the

results in column 35.

The argument defined by a pair of single asterisks must be defined by the following, no

more and no less: (i) an asterisk, (ii) (R) = row number, (iii) a comma, (iv) (C) = a column

number, and (v) an asterisk. No additional commas, spaces or any other characters may be

used.

(c) Double asterisks are used in much the same way that single asterisks are used,

except the argument defined is an integer rather than a constant. If the number in the

worksheet is not an exact integer, it is truncated to an integer for use in the instruction.

For example, if the number 3.7654289 is in row 7 of column 8, then the instruction

ADD column **7,8** to column 16 and put in column 17

would add the numbers in column 3 to the numbers in column 16 and put the results in column

17. The number 3.7654289 is truncated to 3 for defining the argument in this instruction,

but the number in row 7 of column 8 in the worksheet is unchanged.

NRMAX and the variables V, W, X, Y and Z may be referenced using either single or double

asterisks

.

19

1.9 The Size Of The Worksheet .

The instruction QMNITAB automatically sets the size of the worksheet to be 201 rows by
62 columns. This shape is not always the most desirable. At times all one needs is a

simple analysis of several hundred measurements. At other times one needs to perform many
computations for a small set of data. In these situations the shape of the worksheet can be

easily changed by using the instruction

DIMENSION the worksheet to be (r) rows by (c) columns

The integers (arguments) (r) and (c) can have any positive value as long as the product does

not exceed 12,500. When DIMENSION is used, it should immediately follow the OMNITAB

instruction or at least precede any executable instruction. It should not be placed in the

middle of a set of instructions.

1.10 Automatic Printing .

Several instructions for statistical analysis automatically produce the printing of a

comprehensive set of results. In contrast to other statistical programs, the user is not

asked to choose between many different options. He gets everything that the instruction

produces. Invariably, the exercise of an option implies an a priori judgement of the data

which the OMNITAB user is spared. Considerable thought was given to the method of

presenting results and to the selection of items to be printed. An effort was made to give

non-statisticians, in particular, enough information to use their results thoughtfully. For

example, the FIT instruction prints and plots the standardized residuals to enable the user

to assess the adequacy of his statistical model. Careful use of the printed results can be

educational

.

The instructions which have automatic printing are:

STATISTICAL analysis CORRELATION
FIT POLYFIT
ONEWAY TWOWAY
APROPERTIES MPROPERTIES

Each of these instructions can also be used to store results in the worksheet. The same

command preceded by an S, as in SFIT, suppresses the automatic printing and gives only the

stored results. The use of S to suppress the automatic printing can be useful if a few of

the many results are desired on several sets of data, rather that the full set of results

for a single set of data.

1.11 Two -word Commands .

Most instructions have a single command, e.g., MULTIPLY. Some instructions may seem to

have two words in the command, as in STATISTICAL analysis, but the second word is used only

for clarification and can be omitted. The following commands have two words separated by at

least one space. Both words must be used. Except, the command ROWSUM is allowed as a

synonym for the command ROW SUM. The magnetic tape operation commands described in section

CI. 10 are not listed here.

NO LIST ELLIPTICAL FIRST
CLOSE UP ELLIPTICAL SECOND

NEW PAGE ZEROS BJZERO
ROW SUM ZEROS BJONE
F PROBABILITY STRUVE ZERO

PAGE PLOT STRUVE ONE
GAUSS QUADRATURE
UNIFORM RANDOM
PRINT NOTE

20

If a phrase normally occurs as two words in the English language, e.g. new page, then
the OMNITAB command usually has two words, e.g., NEW PAGE. This is not always true in
technical expressions, as in NORMLAGUERRE

.

1.12 Abbreviations .

Abbreviations are allowed for some of the more commonly used commands. For reference, a
complete list is given here. All the commands on the right are array or matrix operation
commands

.

FULL COMMAND ABBREVIATION

SUBTRACT SUB
MULTIPLY MULT
DIVIDE DIV
ABSOLUTE ABS
EXPONENTIAL EXP
LOGE LOG
MAXIMUM MAX
MINIMUM MIN
DIMENSION DIM

FULL COMMAND ABBREVIATION

ASUBTRACT ASUB
AMULTIPLY AMULT
ADIVIDE ADIV
MSUBTRACT MSUB
MMULTIPLY MMULT

Caution: abbreviations are not allowed for the instructions to perform complex
arithmetic. E.g., CDIV cannot be used as an abbreviation for CDIVIDE. Only the above
abbreviations are allowed.

1.13 Synonyms .

Certain commands have synonyms, particularly if an instruction can be used in more than

one context. For example, an array can also be thought of as a matrix. A complete list is

given below.
COMMAND SYNONYM (S)

PERFORM
ORDER
MAXMIN
MOVE
INVERT
AADD
ASUBTRACT
AERASE
ATRANSPOSE
ADEFINE
APRINT "L"

The list does not include commands where a

synonymous with another instruction, as

REPEAT, EXECUTE
SORT (C) , only one argument
EXTREMA
AMOVE, MMOVE
MINVERT
MADD
MSUBTRACT
MERASE, AZERO, MZERO
MTRANSPOSE
MDEFINE
MPRINT "L"

special case of one instruction may be

is equivalent to

MULTIPLY 1, 1, 2

SQUARE 1, 2

1.14 Named Constants .

Two mathematical constants which occur frequently in scientific work can be referenced

using asterisks without actually writing the number explicitly. The constants are, PI =

3.1415927, the ratio of the circumference of a circle to its diameter and, E = 2.7182818,

the base of the natural system of logarithms. The instructions

21

MULTIPLY *PI* by 0.5 and put in column 2

SQUARE of *E* put in column 3

would put 1.5707963 and 7.3890561 into columns 2 and 3. A single asterisk is used directly
on each side of the symbol. No character should be used between the asterisks other than
the named constant (PI or E)

.

Similarly, 18 fundamental physical constants can be used by enclosing the appropriate
symbol in asterisks. The value of a constant depends upon the system of units in use. The
instruction CMNITAB initially sets the value of the constants in SI (Systeme
Internationale) units (metric system) . The system of units is easily changed by using
either of the instructions (with no arguments)

CGS (centimeter-gram-second)
or

SI (Systeme Internationale)

The CMNITAB symbol, the name arid the current value in both SI and CGS units are
for each constant in the following table. SI units were formerly called MKSA units.

Value

given

CMNITAB Physical Constant SI Units CGS Units

ALPHA Fine structure constant 7.29720E-3 7.29720E-3
C Speed of light in vacuum 2.997925E+8 2.997925E+10
CONE First radiation constant 3.7415E-16 3.7415E-5
CTWO Second radiation constant 1.43879E-2 1.43879
F Faraday constant 9.64870E+4 9648.70
G Gravitational constant 6.670E-11 6.o70E-8
GAMMA Gyromagnetic ratio of proton 2.67519E+8 26751.9
H Plank constant 6.6256E-34 6.6256E-27
K Boltzmann constant 1.38054E-23 1.38054E-16
ME Electron rest mass 9.1091E-31 9.1091E-28
MP Proton rest mass 1.67252E-27 1.67252E-24
MUB Bohr magneton 9.2732E-24 9.2732E-21
N Avogadro constant 6.02252E+23 6.022S2E+23

Q Elementary charge 1.60210E-19 1.60210E-20
CME Charge to mass ratio for electron 1.758796E+11 17587960.
R Gas constant 8.3143 8.3143E+7
RINF Rydberg constant 10973731. 109737.31
SIGMA Stephan-Boltzmann constant 5.6697E-8 5.6697E-5

For further information on the use of fundamental physical constants see ASTM Metric
Practice Guide, Second Edition, NBS Handbook 102, U. S. Government Printing Office (1966).
Values of the constants are given on pages 42 and 43.

1.15 Characters Recognized.

The CMNITAB computing system recognizes and uses the letters A through Z,

through 9 and the 12 special characters:
the digits

(blank) / c)

All other characters , such as the one given by a multiple
equivalent to $. See section 1.5 for possible effects.

11-8-2 punch, are made

22

1.16 Commands With Qualifiers .

Some commands have a qualifier denoted by "L", where "L" indicates any one of the
letters A, B, C, D,~E or F. These qualifiers are used to distinguish between formats and
tapes (except in DUMMY "L") . The qualifier (without quotation marks) is part of the

command. One blank space must precede and follow the qualifier without any additional
characters. All of the magnetic tape operation commands have either one or two qualifiers.
One instruction,. RESET "V", has the qualifier "V", where "V" denotes the letter V, W, X, Y
or Z. The commands with qualifiers are:

FORMAT "L" READ TAPE "L" READ TAPE "L" "L"
PRINT "L" CREAD TAPE "L" CREAD TAPE "L" "L"

PUNCH "L" WRITE TAPE "L" WRITE TAPE "L" "L"

READ "L" SET TAPE "L"
ABRIDGE "L" CSET TAPE "L"

NPRINT "L" ENDFILE TAPE "L"

APRINT "L" SKIP TAPE "L"

MPRINT "L" BACKSPACE TAPE "L"

RESET "V" REWIND TAPE "L"

DUMMY "L"

23

2. REPEATED USE OF COMMANDS .

Ordinarily, each instruction is executed once and only once as soon as it is

encountered. Often, an instruction has to be repeated several times and it would be
cumbersome to have to write out an instruction each time. For example, to compute the

average value of the numbers in each of the nine columns 11 through 19 and put the results
in columns 21 through 29, it would be annoying to write

AVERAGE 11,21
AVERAGE 12,22
AVERAGE 13,23
AVERAGE 14,24
AVERAGE 15,25
AVERAGE 16,26
AVERAGE 17,27
AVERAGE 18,28
AVERAGE 19,29

If we wanted to do something similar 100 times rather than 9 the task would be formidable.
A much simpler procedure exists which involves storing, or saving, instructions for repeated
use.

Instructions which are to be repeated are saved for later use. They are not executed
when encountered but are only executed when the appropriate instruction is given. The
command of a stored instruction must be preceded by a valid instruction number and a slash,

/, as in

1/ AVERAGE 11,21

A stored instruction would have limited utility if there were not also an easy way of
modifying the instruction. In our example, the second time the instruction AVERAGE is used
the arguments have to be changed from 11 and 21 to 12 and 22. Modifying instructions is

accomplished by using the INCREMENT instruction. We now have

1/ AVERAGE the values in column 11 and put in col 12

2/ INCREMENT instruction 1 by 1 1

These instructions will be stored but no computing will result. To execute the

instructions and compute we must use the instruction PERFORM, indicating which instructions
are to be executed and how often. Thus, our complete set of instructions is

1/ AVERAGE the values in column 11 and put in col 12

2/ INCREMENT instruction 1 by 1 and 1

PERFORM instructions 1 thru 2, 9 times

General information for the use of stored instructions is given in the sections which
follow. Some of the information on specific instructions is repeated in PART C. A complete
discussion of error diagnostics, and in particular of FATAL ERRORS, is given in section 3.

Several of them pertain to the repeated use of the commands and these are given in the

following discussions. In the REPEAT mode (repeated use of instructions) the error message
comes after the PERFORM instruction and also gives the instruction (statement) number and
the time, or cycle, through the stored instructions in which the error occurred. A complete
message is shown in the following example:

24

OMNITAB 8/18/70
GENERATE 1.(1.)100. into column 1

1/ PROMOTE 25 rows, col 1 into col 11

2/ INCREMENT instr 1 by 20, 0, 1

PERFORM instructions 1 thru 2, 7 times

* INFORMATIVE DIAGNOSTIC IN ABOVE COMMAND
* ATTEMPT TO PROMOTE FROM BELOW NRMAX. FIRST ARGUMENT IS RESET TO NRMAX.
IN COMMAND AT STATEMENT NUMBER 1.0
CYCLE NO. 5 OF 7 OF EXTERNAL PERFORM STATEMENT.

2.1 Numbering Instructions .

An instruction number is a number between 0.1 and 999.9 inclusive. Normally, integers
are used without a decimal point. One digit is allowed after a decimal point. If the
number is less than 1 a zero must precede the decimal point, e.g., 0.6 is a valid
instruction number, but .6 is not. An instruction number which is an exact integer must not
be written with a decimal point unless a zero follows the decimal point. E.g., 28 and 28.0
are valid instruction numbers, but 28. is not. Any statement number which does not conform
to these rules produces the FATAL ERROR

*** ILLEGAL STATEMENT NUMBER

Decimal points in an instruction number are usually used only when instructions are
added as an afterthought . To insert an ADD instruction between instructions 23/ and 24/ we
might for' example use

23.5/ ADD column 3 to column 4 and put in column 5

and avoid having to renumber all the instructions which follow.

A numbered instruction must not immediately follow a data card. If one wants to put
numbered instructions right after data cards, the first numbered instruction should be

preceded by the command NULL. Also, a numbered instruction must precede the PERFORM
instruction which executes it.

An instruction number can be used more than once in a set of instructions. After a

stored instruction lias been used, i.e., executed by a PERFORM instruction, it is sometimes
preferable to reuse the number in the work that follows rather than to use a new number.

See, also, section 2.3. A numbered instruction is saved, hence when a number is reused the

new instruction replaces the previous one. The previous instruction is now destroyed and

the new one is saved. The instruction OMNITAB automatically removes all previously saved

instructions.

Any unnumbered instruction which appears between two numbered instructions is executed

at once as usual. The same result would be obtained if the unnumbered instruction appeared
just before or just after the numbered instructions. For reasons discussed below, the

command PERFORM is an exception to this rule.

One or more blank spaces can be used on either side of the slash following an

instruction number.

Instructions are executed in the same order they are numbered regardless of their

physical order. If ten cards with instruction numbers 1, 2 ... 10 were shuffled and then

put back in the set of instructions, the results would be exactly the same as those obtained
had the cards been supplied in order.

There is a limit to the number of instructions which can be stored in the computer. The

limit is rarely exceeded, but when it is the following FATAL ERROR results

25

*** COMMAND STORAGE AREA OVERFLOW

A precise statement cannot easily be made about the size of this limit. It depends on the
number of arguments in each of the stored instructions. The number is roughly 250.

2.2 Use Of PERFORM .

The instruction PERFORM causes the execution of all stored instructions with numbers
between the first and second arguments, inclusive. The third argument indicates the number
of times the instructions are to be executed. The PERFORM instruction must follow the
stored instructions which are to be executed. The commands EXECUTE and REPEAT are identical
in every way to PERFORM.

PERFORM usually lias three arguments, but may have only two or one. The 1st argument
must be less than or equal to the 2nd argument. If the third argument is missing it is

assumed to be 1. Thus,

PERFORM instructions 11 thru 17, 1 time

and
PERFORM instructions 11 thru 17

are equivalent. If both the second and third arguments are missing, the third argument is

assumed to be 1 and the second argument is assumed to be the same as the first. Thus,

PERFORM 37

is equivalent to

PERFORM 37 through 37

and is also equivalent to
PERFORM instructions 37 thru 37, 1 time

Note that in the above examples the first instruction number is not 1. The instruction
numbers in a PERFORM instruction can be any valid instruction number providing it has been
used. The first argument does not have to correspond with the first numbered instruction
and the second argument does not have to correspond with last numbered instruction. Any
instruction m.jnber that is referred to must exist. In the above example if no instruction
numbered 37 exists, the following FATAL ERROR will occur

*** STATEMENT NUMBER NOT FOUND

PERFORM can be a stored instruction to be executed by another PERFORM instruction. But
an instruction cannot repeat itself. The instruction

17/ PERFORM 15 thru 20, 5 times
would produce the FATAL ERROR

*** STORED PERFORM STATEMENT WILL EXECUTE ITSELF

Caution: Do not make the common mistake of using *** in place of thru. The instruction

PERFORM 1 *** 5, 15 times
is interpreted as

PERFORM 1,2,3,4,5, 15 times

and would produce a FATAL ERROR because there is an illegal number of arguments.

When PERFORM is a numbered instruction we refer to it as a PERFORM within a PERFORM.

The maximum number of PERFORM commands allowed within a PERFORM is eight.

Care should be exercised in using PERFORM as a numbered instruction. Following the

instructions

26

1/

2/

3/ PERFORM 1,2,5
4/

5/

the instruction

PERFORM 1 thru 5, 10 times

may possibly be correct. However, often it is used mistakenly in place of

PERFORM 3 thru 5, 10 times

2.3 Use Of INCREMENT .

The INCREMENT instruction has exactly one more argument than the instruction that is to

be modified. The extra argument is the first one which is the instruction number of the
modified instruction. All arguments must agree in kind with the instruction referred to.

If a decimal point is used in an argument of an instruction, a decimal point must be used in

the corresponding argument in the INCREMENT instruction. Similarly, if a decimal point is

not used, then a decimal point must not be used in the corresponding argument of the
INCREMENT instruction. For the instruction

27/ ADD the value 1.0 to column 2 and put in column 3

the instruction
28/ INCREMENT 27 by 3.0 1

is correct, but the instructions

28/ INCREMENT 27 by 1 1

and
28/ INCREMENT 27 by 1.0 1.0 1

are both incorrect.

An INCREMENT instruction can be incremented by another INCREMENT instruction. If it is,

care should be used. Naturally, an INCREMENT instruction cannot increment itself, if such

an attempt is made the following FATAL ERROR will occur:

*** AN INCREMENT COMMAND CAN NOT INCREMENT ITSELF

If asterisks are used to define an argument (see section 1.8) the INCREMENT instruction

must also contain asterisks. The instruction

18/ ADD the value defined by *1,2* to col 11 and put in col 12

adds the number in row 1 of column 2 to every number in column 11 and puts the result in

column 12. The defining row and column numbers in the argument *1,2* can be incremented

individually using asterisks as in

19/ INCREMENT instr 18 by *1,0* 1

Do not make the mistake of thinking that because *1,2* represents a number, that instruction

18 could be incremented by a number as in

19/ INCREMENT instr 18 by 3.7 1

27

This instruction would produce a fatal error because the argument is improper.

The INCREMENT instruction can be used to increment instructions which contain NRMAX or
one of the variables enclosed in either single or double asterisks. But the variable itself
cannot be incremented this way. In the INCREMENT instruction, 0.0, without asterisks,
should be. used in the corresponding argument for NRMAX or "V". A decimal point must always
be used with zero, even if the argument which is being incremented is an integer; as in
V. The instruction

35/ DIVIDE column 27 by *NRMAX* and put in col 28

could be incremented by

36/ INCREMENT 35 by 1 0.0 1

An instruction containing triple asterisks to imply through can also be incremented, but
care should be used. The instructions

31/ PRINT the numbers in columns 1 *** 5

32/ INCREMENT instr 31 by 10 *** 11
PERFORM 31 thru 32, 2 times

would print the contents of columns 1,2,3,4,5 and 11,12,13,14,15 and 16. The two numbers on
either side of the asterisks do not have to agree.

Some care should be exercised in choosing the location of an INCREMENT instruction. The
usual and best practice is to have the INCREMENT instruction follow the instruction that is

being incremented as in the above examples. In the opening example on page 24

1/ INCREMENT instruction 2 by 1 1

2/ AVERAGE the values in column 11 and put in column 12

PERFORM instructions 1 thru 2, 9 times

would work, but would yield the wrong answers. If the instructions^were to be used this
way, instruction 2 should read

2/ AVERAGE the values in column 10 and put in column 11

In this connection, note that

13/ SQUARE column and put in column 1

is not necessarily incorrect. Although is an illegal column number, the instruction would

be valid if were incremented correctly prior to the execution of instruction 13.

After an instruction has been incremented, it is often desirable to restore the

instruction to its original form for further use. This may happen, for example, if a set of

operations is used for several sets of data or when one has a PERFORM within a PERFORM. It

can be done in three different ways. The INCREMENT instruction can be used, possibly with

negative arguments, but this method is sometimes tricky and is prone to errors. One can

simply rewrite the numbered instruction in its original form (or any other form for that

matter). This wipes out the instruction you had and replaces it with the new one. The

third method is to use the instruction RESTORE. The instruction RESTORE does not have to be

stored (numbered) . Suppose we want to read into the worksheet eight columns of data to find

the averages and to repeat this 15 times. Then, we could use the following instructions:

28

1/ AVERAGE column 11 put in column 21

2/ INCREMENT instr 1 by 1 1

3/ PERFORM instrs 1 to 2, 8 times
4/ ABRIDGE row 1 of columns 21 *** 28

5/ RESTORE instr 1 to 11 21

READ data into columns 11 *** 18

(data cards)

PERFORM instrs 3 to 5

READ data into columns 11 *** 18

(data cards)

PERFORM instrs 3 thru 5

etc. (repeallast three lines 12 times)

An exception exists for instructions for using magnetic tapes. The qualifier of a. tape

operation instruction, which refers to a tape' number, must be incremented even though it is

not an argument. This is true for tape operation instructions only. If the command has two

qualifiers, the first qualifier refers to a tape and the second to a format. Only the first

qualifier should be incremented. Usually the number zero is used in the INCREMENT

instruction to increment the tape number. See PART C for further details and, in

particular, non-NBS users should verify that the magnetic tape operation instructions

operate with their computer as described herein.

2.4 Instructions Which Must Be Stored .

Most instructions can be either stored or not stored. Because of their form, the

following instructions must always be stored for later use:

COMPARE ISOLATE ITERATE
IFEQ IFNE IFGE IFGT IFLE IFLT

Actually, ISOLATE and ITERATE do not have to be stored, but in almost all applications they

should be stored.

When an instruction which must be stored appears without an instruction number, the

following FATAL ERROR occurs

*** CONflAND MUST BE STORED

The instruction NULL does not have to be stored, but its chief use is as a stored

instruction to wipe out an instruction that is no longer wanted.

2.5 Instructions Which Cannot Be Stored .

Most instructions can be stored for repeated execution. Because of their form, the

following instructions must not be stored:

'

FORMAT "L" HEAD NOTE N0TE1 N0TE2 OMNITAB STOP READ SET

TITLE1 TITLE2 TITLE3 TITLE4 TITLEX TITLEY BEGIN FINISH

If the command BEGIN is stored (pi >:eded by an instruction number), the following FATAL

ERROR will occur:

*** COMMAND NOT ALLOWED IN THE REPEAT MODE

If any of the commands FORMAT, NOTE, TITLE or HEAD are stored, the following INFORMATIVE

DIAGNOSTIC (see section 3.4) will be given:

* COMMAND NOT ALLOWED IN THE REPEAT MODE. EXECUTED BUT NOT STORED

No diagnostic is given if either READ, SET or FINISH is stored.

29

Although N0TE1 and N0TE2 cannot be stored, the instruction PRINT NOTE can be stored and

it is PRINT NOTE which actually executes N0TE1 and N0TE2. Also, although READ cannot be

stored, the command READ "L" format can be stored. If the command READ "L" is stored, the

data should immediately follow the external PERFORM instruction which executes READ "L".

The data should not immediately follow the READ "L" command as would be the case if the

command were not stored. External means that the PERFORM command is not stored as opposed

to an internal (with respect to the REPEAT mode) PERFORM which is stored. READ "L" can be

used effectively as a stored instruction when it is necessary to perform the same set of

operations on several different sets of data, but extreme care should be exercised. If a
FATAL ERROR occurs before the READ "L" instruction is executed, the external PERFORM

instruction will not execute the READ "L" instruction. As a severe consequence, the data

which follow the external PERFORM will be treated as instructions rather than data and FATAL

ERRORS will result. If there is a large number of data cards, a large number of FATAL

ERRORS will result which also can consume a lot of computer time. Consequently, every

instruction should be very carefully checked to ensure that it is correct. It may even be

advisable to make a trial run without data just to be sure there are no FATAL ERRORS.

When identical operations are performed on different sets of data, each set is preceded

by an appropriate READ instruction and then followed by the appropriate PERFORM instruction.

2.6 Use Of BEGIN And FINISH .

The technique of using BEGIN and FINISH is retained from the original OMNITAB. Although

it is simple, it has several disadvantages. If an instruction is added later, the numbering

sequence will change and all the INCREMENT instructions may have to be changed accordingly.

An instruction which is not to be stored cannot be used between BEGIN and FINISH.

The method of numbering instructions directly can be avoided by simply using the

instruction

BEGIN storing instructions

hnmediately before the first instruction to be stored and using the instruction

FINISH storing instructions

immediately after the last instruction to be stored.

Instructions are automatically numbered by the computer starting with 1 and proceeding

in steps of 1 until the last instruction, before FINISH, has been numbered. In the LIST OF

COMMANDS, the instruction number assigned by the computer is listed on the extreme left.

If you want the instructions numbered starting with some number other than 1, use the

instruction

BEGIN storing instructions starting with number (N)

This instruction should be used if BEGIN is used more than once in the same set of

instructions and earlier instructions are not to be wiped out. The instructions

BEGIN
and

BEGIN 1

are equivalent.

Manually numbered instructions can be used in conjunction with BEGIN and FINISH. But

they must not be placed between BEGIN and FINISH or the FATAL ERROR

*** STATEMENT NUMBER MAY NOT BEGIN ANY CARD BETWEEN BEGIN AND FINISH CARDS

30

will result. Any instruction numbered manually automatically wipes out the instruction
which has been given the same number by the computer. The instructions

BEGIN
ADD 1.0 1.0 11

INCREMENT 1 by 0.0 1.0 1

FINISH
PERFORM 1,2,4
1/ MULTIPLY 2.0, 1.0, 15

PERFORM 1,2,4

will put the numbers 2,3,4,5 and 2,4,6,8 into columns 11 through 18.

If, in the above example, we were to replace

1/ MULTIPLY 2.0, 1.0, 15

by
BEGIN
MULTIPLY 2.0, 1.0, 15
FINISH

the original ADD instruction would be deleted as soon as the second BEGIN was encountered,
but not before the first PERFORM had been executed. The INCREMENT instruction, instruction
numbered 2, would remain intact as only one instruction had been used after the second
BEGIN.

2 .

7

Branching .

Branching (or logical branching) is a term used to describe a point in a set of
instructions where one group of instructions is executed if a certain condition is true and
a different set of instructions is executed if the condition is false. Branching is common
in most computer languages such as FORTRAN. In OMNITAB, branching is seldom necessary. It

primarily occurs in iterative procedures used in non-linear least squares, inverse
interpolation, finding the values of an inverse function, etc. The seven instructions used
in branching

COMPARE IFEQ IFNE IFGE IFGT IFLE IFLT

are described in PART C. Of these instructions, COMPARE is probably the one most often
used. Note, all branching instructions must be stored.

2.8 Additional Comments .

Earlier it was explained how to find the average value of the numbers in several columns

using stored instructions or the REPEAT MODE. Notice that it was necessary to have the

original data in consecutive columns (or have adjacent column numbers differ by a constant
amount); similarly for the results. This type of procedure is not always necessary.
Clearly, most of the instructions for entering and printing data, such as READ and PRINT,

will operate on several different columns whose numbers are not necessarily evenly spaced
(or even monotonic). In addition, some of the manipulative and arithmetic instructions can
perform operations on several different columns. For example,

FLIP column 11 into 2, 3 into 17, 8 into 5, and 31 into 12

The following is a list of such commands:

ERASE
PRODUCT

CHANGE CLOSE UP DEMOTE

EXCHANGE FLIP ORDER
PROMOTE ROW SUM SORT

31

Care should be exercised in the use of these instructions if any column number is used more
than once. For example, the instruction

FLIP column 11 into column 12 and column 12 into column 13

is valid,' but all it does in effect is move column 11 into column 13.

The more experienced user would do well to note that the array and matrix operation
instructions can be used very effectively for data manipulation without resorting to the use
of the REPEAT mode. Matrix operation instructions can be used to perform operations usually
associated with matrix algebra (MINVERT) , but are perhaps more often used for data
manipulation. As an illustrative example solely, and not particularly useful in this case,
consider the earlier problem of finding the averages for columns 11 through 19. If NRMAX =

50, we could use the following set of instructions:

DEFINE 1.0 into column 20

M(V'A) 1,11 size 50x9 by column 20, store 1,21
ADIVIDE the array in 1,21 by 50.0 and put in 1,21
DUPLICATE 50 times the array in 1,21 size 1,9 put in 1,21

The last instruction would only be desirable, or necessary, if further calculations were to

be performed on the averages. Note, **NRMAX** could be used for 50, if NRMAX was unknown;
and instead of 50.0 we could use *NRMAX* (see section 1.8).

A good use of the PERFORM instruction is in the generation of ad hoc subprograms or
subroutines as they are usually called. It is not uncommon to write a set of instructions
which can be used as a subprogram or may be used in different sets of instructions at

different times by different people. Often the subprogram takes the place of an instruction
that does not exist. There is no instruction to compute the harmonic mean of a column of
numbers. If there were a great demand for the instruction, the command HARMONIC MEAN might
be added to the vocabulary, But until such time, cards could be punched for the following
instructions

501/ DIVIDE 1.0 by column 1 and put in column 2

502/ AVERAGE column 2 and put in column 2

503/ DIVIDE 1.0 by column 2 and put in column 2

These cards could be kept and every time we want the harmonic mean of column 1 put in column
2 we would use the cards with

PERFORM instructions 501 thru 503

The subroutine above can be made more general by using **X** and **Y** in place of

column 1 and column 2. The variables X and Y could then be RESET to the desired value each

time the subroutine is used. This procedure is particular useful if the subroutine is

lengthy or complex. With a little extra effort and cooperation among colleagues, a small
local subroutine library can be maintained for special purposes. The NBS Statistical
Engineering Laboratory maintains a small library for its own use.

32

3. DIAGNOSTIC FEATURES AND ACCURACY

3.1 Diagnostic Features .

After a set of instructions has been executed, the master program prints the

LIST OF COMMANDS, DATA AND DIAGNOSTICS

subject to certain restraints which may be imposed by the user. See LIST, NO LIST and READ
"L" in PART C. Each card that is processed is listed and any errors in an instruction that
have been detected are listed just below the instruction.

The simplicity of OMNITAB and the natural structure of the language make it quite
possible to write a set of instructions free of errors. But when a set of instructions is

written in haste or if the set is complicated, the user may make some errors. The
diagnostics which are printed make it easy to spot an error and correct it. Considerable
care and attention has been given to the proper detection and identification of errors by
the master program.

There are three levels of errors and diagnostic messages: (i) fatal errors, (ii)

arithmetic faults and (iii) informative diagnostics. An example of each is given in the
following example.

OMNITAB 6/12/70 EXAMPLE OF ERROR DIAGNOSTICS

LIST OF COMMANDS, DATA AND DIAGNOSTICS

TITLE7 PLOT OF LOG OF X

* INFORMATIVE DIAGNOSTIC IN ABOVE COMMAND
* IMPROPER TITLE NUMBER, ASSUMED 1

GENERATE 0.0(. 01)1.0 IN COLUMN 1

LOGTEN OF COLUMN 1 PUT IN COLUMN 2

** ARITHMETIC FAULT IN ABOVE COMMAND, ZERO RETURNED 1 TIMES
** NEGATIVE ARGUMENT TO SQRT, LOG OR RAISE

PLOT COLUMN 2 VERSUS COLUMN 1

SQUARE 2,3
INVERT 1,1 SIZE 3,3 STORE 1,4
++++++++++++++++++++ SMALLEST ERROR BOUND ON INVERTED MATRIX IS .5-03 +++

PRIMT COLUMNS 4, 5 AND 6

*** FATAL ERROR IN ABOVE COMMAND
*** NAME NOT FOUND IN LIBRARY

ONLY ONE FATAL ERROR

A single asterisk is printed at the extreme left of an informative diagnostic, two

asterisks for an arithmetic fault, and three asterisks for a fatal error message. In

addition, an error bound follows a series of +'s after the command INVERT as shown above.

Each type of error message is discussed separately in the next three sections.

33

A fatal error in an instruction results in a failure to execute that instruction and all
subsequent instructions. However, the execution of instructions is not affected by
arithmetic faults or informative diagnostics. The guiding principle is that computation
should be allowed to continue as long as at least part of the results are likely to be
useful. (The command NOTE is an exception; see PART C for details.)

3.2 Fatal Errors .

A FATAL ERROR occurs if an instruction is incorrectly written and the consequences would
seriously affect the results of executing subsequent instructions. When a FATAL ERROR
occurs in an instruction, that instruction and all subsequent instructions are not executed.
However, the remaining instructions are examined to detect any other errors that can be
found simply by reading the instruction. Errors which can only be detected when the
instruction is executed will not be found if a FATAL ERROR has already occurred.

If a FATAL ERROR is detected in a stored (numbered) instruction, the remaining stored
instructions are not checked for errors. This is worth noting for the correction of a FATAL
ERROR in a stored instruction does not necessarily mean that there are no more errors. The
user should double check the remaining stored instructions to assure that they are correctly
written.

If a FATAL ERROR occurs in a set of instructions, the number of FATAL ERRORS is given at
the end of the LIST OF COMMANDS, DATA AND DIAGNOSTICS as in the example of section 3.1. The
notation (n) is used to indicate a number which is printed by an error message.

The following are the most common FATAL ERRORS and can occur in many different ways:

*** NAME NOT FOUND IN LIBRARY
*** ILLEGAL ARGUMENT ON CARD
*** NRMAX=0
*** (n) IS AN ILLEGAL NUMBER OF ARGUMENTS
*** COLUMN NUMBER TOO BIG OR LESS THAN 1
*** IMPROPER TYPE OF ARGUMENT

The following FATAL ERRORS can occur in the use of stored instructions . See section 2

and PART C for further details.

*** ILLEGAL STATEMENT NUMBER
*** COMMAND NOT ALLOWED IN THE REPEAT MODE
*** STATEMENT NUMBER MAY NOT BEGIN ANY CARD BETWEEN BEGIN AND FINISH CARDS
*** COMMAND STORAGE AREA OVERFLOW
*** STATEMENT NUMBER NOT FOUND
*** STORED PERFORM STATEMENT WILL EXECUTE ITSELF
*** COMMAND MUST BE STORED
*** AN INCREMENT COMMAND CAN NOT INCREMENT ITSELF
*** ILLEGAL *STATEMENT*

The following FATAL ERRORS can only occur in a particular instruction or group of
instructions

:

*** DIMENSIONED AREA EXCEEDS LIMIT
*** ILLEGAL SIZE ROW NUMBER
*** DEFINED MATRIX OVERFLOWS WORKSHEET
aaa INTEGER ARGUMENT LESS THAN -8191
*** MATRIX IS (NEARLY) SINGULAR
*** INSUFFICIENT SCRATCH AREA
*** DEGREE IS LARGER THAN NO. OF NON-ZERO WEIGHTS
*** NEGATIVE WEIGHTS MAY NOT BE USED
*** NUMBER OF COLUMNS IS GREATER THAN NUMBER OF ROWS

34

*** FORMAT NOT FOUND
*** INCORRECT TAPE UNIT, COMMAND IS NOT EXECUTED
*** NUMBER OF ARGUMENTS SHOULD BE (n)
*** MATRIX IS NOT SYMMETRIC

3.3 Arithmetic Faults .

An arithmetic fault occurs in an attempt to perform an operation which is normally
undefined. For example, division by zero is not defined mathematically. In OMNITAB there
are nine different types of arithmetic faults which cause the printing of a diagnostic
message. Arithmetic errors may result from (i) accidental use by a user of an improper
value, (ii) intentional use (see section 4.6), or (iii) an occasional occurrence of an
improper number in calculations performed internally by an instruction.

Below each instruction which produces an arithmetic fault a diagnostic message is
printed showing the number of times the error occurred. In each case the functional value
is set equal to zero and the computation continues. Often, zero is the result desired.

In particular, the result of dividing any number by zero is defined to be zero. This is

always true for instructions which are directly concerned with division such as DIVIDE,
ADIVIDE and CDIVIDE.

Division by zero may accidentally occur somewhere in the middle of a set of calculations
controlled by an instruction where the division operation is not obviously indicated, as in
FIT. Here, most computers, including the NBS computer, will set the result equal to zero.
But a few computers give an error termination and all computation ceases. Where it is known
that division by zero may occur, steps have been taken to avoid an error termination, but
this problem has not been eliminated completely. An error termination will occur only
rarely.

Arithmetic errors which appear to be beyond the user's control can occur in instructions
like FIT and INVERT. Sometimes the errors are of little significance and can be essentially
ignored. At other times it is an indication of serious difficulty. The difficulty may be
inherent, but sometimes it can be removed by a reformulation of the problem. For example, a

FIT using a set of vectors which are almost dependent may produce serious round-off errors
which can be eliminated by using a different model having a set of vectors which are more
independent

.

To avoid the excessive printing of diagnostics, a tally is kept. After the first 100
arithmetic faults have been found, the following message is printed:

* 100 INFORMATIVE AND ARITHMETIC DIAGNOSTICS HAVE BEEN ENCOUNTERED.
* ANY SUCH ADDITIONAL DIAGNOSTICS FOR THIS COMMAND OR REPEAT MODE ARE DISREGARDED.

The most commmon arithmetic faults occur in division by zero, taking the square root of
a negative number and in attempting to take the logarithm of a non-positive number. The
folowing are the nine possible arithmetic faults which can occur:

** NEGATIVE ARGUMENT TO SORT, LOG OR RAISE
** EVALUATION OF EXPONENT PRODUCES OVERFLOW
** ARGUMENT OUT OF BOUNDS TO INVERSE FUNCTION
** ARGUMENT TOO LARGE FOR SIN OR COS, ZERO RETURNED (n) TIMES
** BESSEL ARGUMENTS SCALED TO AVOID OVER/UNDER FLOW. RETURNED (n) TIMES
** DIVISION BY ZERO, RESULT SET=0, (n) TIMES
** TRIG FUNCTION NOT DEFINED RESULTS SET=0 (n) TIMES
** ONE OF THE VALUES COMPARED IS ZERO, ABSOLUTE TOLERANCE WAS USED (n) TIMES
** X FOR ELLIPTICAL INTEGRALS IS = 1.0 OR GREATER. RESULT IS SET TO 0.0 (n) TIMES

35

j.\ Informative Diagnostics .

Individual instructions may impose certain restrictions which when violated produce the

printing of an informative diagnostic. An appropriate adjustment is made by the master
program and computation -continues. As an example consider:

CMNITAB
GENERATE 1.(1.) 300. IN COLUMN 1

* INFORMATIVE DIAGNOSTIC IN ABOVE COMMAND
* TOO MUCH DATA IN SET, READ OR GENERATE, SPILL LOST

Either the user forgot to put in a DIMENSION instruction or the 3 was incorrectly punched

for a 2, say.

An informative diagnostic is given rather than a fatal error on the basis that the

results may be at least partially useful, although not necessarily. Often the error is of

minor or no significance. But the error can be serious and the user should carefully check

the importance of the diagnostic.

As was true for arithmetic faults, see section 3.3, after the first 100 informative

diagnostics occur, the following message is printed:

* 100 INFORMATIVE AND ARITHMETIC DIAGNOSTICS HAVE BEEN ENCOUNTERED.
* ANY SUCH ADDITIONAL DIAGNOSTICS FOR THIS COMMAND OR REPEAT MODE ARE DISREGARDED.

In most cases, a specific informative diagnostic can only result from the use of one

particular instruction or group of instructions. A complete list of the informative

diagnostics which are possible is given below.

* TOO MUCH DATA IN SET, READ OR GENERATE, SPILL LOST
* COMMAND NOT ALLOWED IN REPEAT MODE. EXECUTED BUT NOT STORED
* VALUE REQUESTED IN SHORTEN, ACOALESCE OR AAVERAGE NOT FOUND.
* BAD HEAD. COLUMN GT 50 OR NO /
* THIS COMMAND WAS NOT EXECUTED BECAUSE ITS MEANING WAS QUESTIONABLE
* F LESS THAN 0, SET =
* NU1 OR NU2 LESS THAN 1
* NU1 OR NU2 TRUNCATED TO INTEGER
* IMPROPER TITLE NUMBER, ASSUMED 1
* NO OF ROWS NOT = TO COLS. MATRIX USED LARGEST SQUARE
* ASTERISK STRING IMPLYING 'THRU' INCORRECT, IGNORED
* UNNECESSARY ARGUMENTS IN COMMAND IGNORED
* PARTIAL STORAGE OF MATRIX
* INSUFFICIENT SCRATCH AREA
* NRMAX IS NOT LARGE ENOUGH TO ALLOW ITERATION
* 1ST COLUMN OF ISETUP OR ISOLATE IS NOT MONOTONIC OR IS CONSTANT
* ITERATION HAS FOUND NO VALUES
* WORKSHEET IS TOO SHORT TO ACCOMMODATE ALL THE VALUES GENERATED BY THIS COMMAND.
* MAXMIN HAS FOUND NO EXTREMA
* MAXMIN HAS FOUND AND IGNORED A TRIAD OF X'S WITH AT LEAST TWO IDENTICAL VALUES.
* MORE THAN ONE ARGUMENT IN COMMAND. ONLY FIRST ONE IS USED
* FORMAT NOT FOUND. READABLE FORMAT IS USED
* ONE, SOME OR ALL WEIGHTS ARE NEGATIVE
* ALL WEIGHTS ARE ZERO. COMMAND IS NOT EXECUTED
* ARG FOR BESIN,BESJN,BESKN GIVES A RESULT TOO LARGE/ SMALL. COMMAND NOT EXECUTED.
* COLUMN NOT LONG ENOUGH TO STORE ALL ELEMENTS. ONLY NROW WILL BE STORED.
* NOT ENOUGH DATA ON COL TO RESTORE MATRIX/ARRAY. DATA AVAILABLE WILL BE USED.
* SUM OF SQRS DO NOT ADD UP-ABS. VALUE OF (TOTAL-ROW- COL-RES.)/TOTAL EXCEEDS 5.E-7)
* MORE THAN 50 HEAD COLUMN COMMANDS HAVE BEEN USED.
* ATTEMPT TO PROMOTE FROM BELOW NRMAX. FIRST ARGUMENT IS RESET TO NRMAX.

36

* ATTEMPT TO DEMOTE OFF THE WORKSHEET. SPILL IS LOST.
* NEGATIVE VALUE (S) WERE ENCOUNTERED BY PARTITION FUNCTION. ZEROES STORED.
* NEGATIVE ABSOLUTE TEMPERATURES CONVERTED.
* CAUTION, USE EXPERIMENTALLY ONLY. NOT OPTIMUM IN ORDER TO MAKE IT MACHINE INDEPENDENT.

REFERENCES - J.B.KRUSKAL, ACM, 12, 92. AND J.H. HALTON,SIAM REV., 12,1.
* COMMAND IGNORED - S BEFORE COMMAND NAT-IE MEANINGLESS IF NO STORAGE REQUESTED.
* NUMBER OF SIGNIFICANT DIGITS AFTER DECIMAL FT. HAS BEEN SET TO (n)

3.5 Accuracy In The Use Of Instructions.

Each of two or more instructions can give fully accurate results, but when used together
inaccuracies can occur. Consider

DIVIDE 2. by 3. and put in column 1

DIVIDE 1. by 3. and put in column 2

SUBTRACT column 2 from column 1 and put in column 3

The results correct to 8 digits in columns 1 and 2 are 0.66666667 and 0.33333333. The
result in column 3, which is supposed to be 1/3. is 0.33333334. An error of one lias been
introduced in the eighth digit in a trivial operation. This example is an extreme over-
simplification of situations which can cause serious problems. A main source of error in
computing is in the subtraction of two quantities which are almost equal. The operation

1965.3289 - 1965.3276 = 0.0013

starts with two numbers having 8 significant digits and yields a result which is only
accurate to two significant digits.

Small errors should not be dismissed lightly. The essential charateristic of a computer
is its ability to perform millions of calculations in a small time. The small errors can
accumulate into very large errors quickly. This is dramatically illustrated in the
following example taken from "Topics in the investigation of linear relations fitted by the
method of least squares." F. J. Anscombe, J. R. Statist. Soc, B, 29, 1-29 (1967).

The so-called computational formula for the variance of a set of measurements appears in

most elementary books on statistics and statistical computing. If the formula

l
n

.x! - (Ix.)
2 /n'1=1 i L 1/

(n-1)

is applied to the measurements

9000, 9001 and 9003

the result is in error in the first digit. But if the definition of the variance

Ei=1 (x
±

- x)
2/(n-l)

is used, the result is correct to 8 digits. This example shows how easy it is to get

inaccurate results with a poor formula and at the same time demonstrates how accurate
results can be achieved by choosing the appropriate algorithm (formula)

.

The novice, who is familiar with the use of a desk calculator, should realize that

computational difficulties that arise in hand calculations may easily be spotted and

corrected. But when the same calculations are done using a computer, the user may only see

the final result and errors may go undetected.

37

In the days before the computer was invented, people went to some length to provide
excellent cross checks on computations. For some reason, these cross checks are often
ignored when a computer is used. Perhaps people falsely assume that humans make mistakes
and computers don't. We should re-introduce cross checking. Whenever feasible, two
independent methods should be used. The command APROPERTIES can often be used effectively
to check the correctness of data entered into the worksheet and subsequent calculations.
The instruction APROPERTIES produces most of the information formerly given by the old
command SUMMARIZE, which it replaces, such as sum of values, minimum value, etc..

3.6 Accuracy Of Instructions .

The developers of OMNITAB consider accuracy to be of paramount importance. The
idiosyncrasies of a computer make it particularly important to exercise extreme care and
caution in writing the master program. At times some loss in efficiency results in an
attempt to provide greater accuracy. It is small comfort to know that you were able to do
your computing in one or two seconds less time if the answers are incorrect. Seldom is the
increase in computing time (or cost) to achieve greater accuracy of any consequence. Often
the improved accuracy avoids considerable embarassment resulting from publication of
meaningless results. In problems for which OMNITAB is useful, the computing cost is usually
a small fraction of the total cost of the scientific effort and a few more seconds of
computer time to obtain accurate results is a small price to pay. An emphasis on accuracy
is particularly important in a system like OMNITAB which may be used by persons unfamiliar
with the internal workings of a computer.

When it is known that an instruction can produce inaccurate results in certain
circumstances, an indication of the accuracy of the instructions should be printed. Notable
examples appear in the commands FIT and INVERT. The FIT instruction indicates the computing
accuracy of the least-squares coefficients in the automatic printing. (See PART C for
further details.) Under rather general conditions, a matrix can be inverted exactly. (See
"Solving equations exactly," Morris Newman, J. Res. NBS 71B (1967), 4, 171-179.) But in
this case, the additional cost is considerable and not deemed justified for routine use.
The algorithm that is used produces an error bound which is printed in the LIST OF COMMANDS,
DATA AND DIAGNOSTICS immediately after the listing of the command INVERT (or MINVERT)

.

The original OMNITAB had its own programs to compute the elementary functions (SIN,

LOGE, etc.) which were of known accuracy. In order to make CMNITAB as machine independent
as possible, we are unable to follow this procedure and must rely on the system library of
the particular computer system in use. The accuracy of system library subroutines varies
from one computer to another. Some are quite accurate. Others are surprisingly inaccurate
as was explained excellently by W. J. Cody, "Software for the Elementary Functions,"
Mathematical Software Symposium, Purdue University, April 1-3, 1970. The user should not
blithely assume that all 8 digits are correct (or that full machine accuracy is obtained).

Because accuracy is considered very important, the user should not expect that full

accuracy is always achieved. OMNITAB is a large system and it would be unheard of with the
present state of the computing art to have complete accuracy throughout. The master program
is continually being revised to obtain greater accuracy. Although the FIT instruction is

accurate ("An Evaluation of Linear Least Squares Computer Programs," R. H. Wampler, NBS J.

Res., 74B, 59-90, 1969.), it has been modified two or three times to improve its accuracy.
We have already begun to take advantage of recent advances in numerical analysis to make
some further improvement.

No command is added to the vocabulary unless the algorithm used is good, if not the

best. The implementation of some commands has been delayed, e.g., GAMMA, partly because a
satisfactory computing algorithm is not available.

All of this is intended neither to unduly frighten the user nor to make hir ver-
confident. There are those who approach the computer with blind faith. There are th-^e who
have extreme skepticism. There is a middle road where the computer can be used sensibly and

very effectively.

38

4. FOR MORE EFFECTIVE USE OF OMNITAB II.

4.1 Self-Teaching.

No manual can hope to answer every single question. This manual is certainly no
exception. Despite the simplicity of OMNITAB, -users may have many questions. What then? A
common practice is to find a neighborhood "expert" and ask him or her the question. This
practice has several disadvantages despite its apparent simplicity. It consumes a lot of
valuable time, the "expert" may not know the answer, it doesn't help answer the next
question, the answer is not always complete and it may not fully sink in. A method that
works very effectively is self- teaching. The importance of self-teaching cannot be over-
emphasized. It is a useful, inexpensive, simple and often exciting means to clarify the
meaning or properties of an instruction.

Before using the STOP conmand, examine the LIST OF INSTRUCTIONS in PART D to find an
instruction (or a few) which (a) you have not used before, (b) you might want to use in the
near future, and (c) one whose meaning is not clear. Then write a short set of instructions
to exhibit the meaning of the new instruction and insert this short set just before your
STOP command. This will take very little time and will cost practically nothing.

For example, from the LIST OF INSTRUCTIONS in PART D it is not clear what the
instruction RMS actually does. However, the user can readily find out for himself by using
a set of instructions such as:

OMNITAB 6/13/70 TEST RMS
GENERATE 1.(1.) 5. in column 1

RMS column 1 put in column 2

PRINT columns 1 and 2

STOP

By working with integers one can quickly do a few hand calculations to compare with the

printed results. Note, the sum of the first n squared integers is n(n+l) (2n+l)/6. If you
know that RMS stands for something like root mean square you should be able to figure out

exactly what operations the instruction performs.

The manipulative instructions are very powerful, yet they are not quite as easy to

understand as the arithmetic instructions. One can write a short set of instructions which

will help clarify the meaning of several of them at one time. Witness the following set of
instructions

:

OMNITAB 5/28/69 SELF-TEACHING INSTRUCTION SET

GENERATE 1.(1.) 10. in column 1

FLIP column 1 into column 2

CENSOR column 1 for 7.0, replace by 2.0, put in col 3

PROMOTE 1 row, column 1 into column 4

MOVE the array in 3,1 of size 6x1 to 2,5

ROW SUM columns 1,2,3 and put in col 6

PRINT columns 1 *** 6

The results of using this set of instructions are:

39

COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN

1.0000000
2.0000000
3.0000000
4.0000000
5.0000000
6.0000000
7.0000000
8.0000000
9.0000000

10.000000

10.000000
9.0000000
8.0000000
7.0000000
6.0000000
5.0000000
4.0000000
3.0000000
2.0000000
1.0000000

2.0000000
2.0000000
2.0000000
2.0000000
2.0000000
2.0000000
2.0000000
8.0000000
9.0000000

10.000000

2.0000000
3.0000000
4.0000000
5.0000000
6.0000000
7.0000000
8.0000000
9.0000000

10.000000
0.

0.

3.0000000
4.0000000
5.0000000
6.0000000
7.0000000
8.0000000

13.000000
13.000000
13.000000
13.000000
13.000000
13.000000
13.000000
19.000000
20.000000
21.000000

Self-teaching is also effective in determining whether an instruction allows certain
values for the argument of a function. For example, what happens if you use the instruction
ERROR when some of the values in the column are negative? Also, self- teaching is useful in
obtaining a full understanding of the instructions which have a comprehensive automatic
printing (see section 1.10).

Hopefully, this manual will answer the major questions and prove useful. But the user,
armed with the LIST OF INSTRUCTIONS and an appreciation of self-teaching, could quickly
become an "expert" by continually writing short sets of instructions like the above. The
sets of instructions for testing CMNITAB in "Test Problems and Results for OMNITAB II," Ruth
N. Varner and Sally T. Peavy, NBS Technical Note 551, U. S. Government Printing Office,
should also be of help (see section 5.1).

Self-teaching is an effective supplement or even replacement for a manual, but OMNITAB
itself can be a useful teacher. If the instruction POLYFIT were used to fit a straight
line, the automatic printing would give the coefficients from the straight line fit and also
the coefficient (omitting the last term) from fitting just a constant. One could see
immediately that the estimate of the constant term is different in the two fits, which
dramatizes the fact that the two vectors in the straight line fit are not orthogonal. See
PART C for further details.

4.2 A Few Common Errors

.

Listed below are some comments on some of the more common errors that are made which one
should be especially careful to avoid.

(a) Incorrect number of arguments. It is a good idea to check the number of arguments
in your written instruction against the number of arguments given in the column of
notes at the extreme right in the LIST OF INSTRUCTIONS in PART D.

(b) Be sure data have been put into the worksheet before using an executable
instruction.

(c) Check to make sure all arguments are of the right kind: column numbers must not
have a decimal point and constants must have a decimal point. Check against the
LIST OF INSTRUCTIONS if in doubt.

(d) The first command after READ or SET must be spelled correctly and must not be a

stored instruction, otherwise it will be treated as data.

(e) The use of three asterisks (***) to mean thru in a PERFORM instruction is not
allowed.

(f) When writing stored instructions, numbers less than one must be written with a zero
before the decimal point and numbers which have a decimal point must have a digit
to the right of the decimal point.

40

(g) Any INCREMENT or RESTORE instruction must have exactly one more argument (the
stored instruction number) than the instruction (except tape commands) referred to
and the other arguments must agree in kind.

(h) When using the command READ "L" remember to indicate in the first argument the
number of data cards that are to be read into the worksheet.

4.3 Combining Sets Of Instructions .

Often it is desirable to process several sets of OMNITAB instructions (problems)
simultaneously. It is substantially cheaper to process sets of instructions together rather
than separately. When sets of instructions are combined, there should be only one STOP
command which appears at the end of the last set of instructions. The OMNITAB command must
be used as the first card of each set of instructions. The OMNITAB command, see PART C,
initializes everything so that each new set is processed independently of the other sets.
In particular, if a FATAL ERROR occurs in one set it has no bearing on the execution of
another set of instructions.

4.4 Use Of FORTRAN Formats.

OMNITAB provides considerable flexibility for entering and printing data without using
formats. The regular PRINT instruction prints data in a readable form with the decimal
point in a fixed position. The number of significant digits printed is easily changed from
8 to any other desired number. The instruction can be modified by preceding it with either
the instruction FIXED or the instruction FLOATING. If only one row at a time is to be
printed, one can use ABRIDGE. To print arrays or matrices one can use APRINT or MPRINT. In
addition, there are a number of commands for improving printing such as HEAD, TITLE, NOTE,
PRINT NOTE and SPACE.

In addition to this flexibility, there is provision for using regular FORTRAN formats to
meet more exacting requirements. The instruction

FORMAT "L" (user's own format)

can be used by anyone having a knowledge of a FORTRAN language in conjunction with any of
the following commands:

READ "L" APRINT "L" CREAD TAPE "L", "L"
PRINT "L" MPRINT "L" READ TAPE "L", "L"

NPRINT "L" WRITE TAPE "L", "L"
ABRIDGE "L"
PUNCH "L"

There are five commands in the first column for entering and printing data, two in the

second column for printing arrays, and three in the third column for magnetic tape
operations

.

The qualifier "L" represents anyone of the first six letters A, B, C, D, E or F. Thus,
as many as six different formats ca. 1

, be used at one time. Note, all magnetic tape operation
commands have one or two qualifiers. Only those that are used in conjunction with FORMAT
"L" have two qualifiers. The first qualifier refers to the tape in use. The second
qualifier refers to the FORMAT.

Whenever a FORMAT command is used:

(i) The FORMAT "L" command must precede (anywhere) the executable command which
refers to it.

(ii) The qualifier of the executable instruction must agree with the qualifier of the
FORMAT instruction.

41

(iii) More than six: formats can be used in any one set of instructions simply by re-
using any of the qualifiers in FORMAT "L", but only six; can be used at one time. The
master prdgram always uses the last written FORMAT "L".

In the FORMAT "L" instruction, a regular FORTRAN format is inserted between parentheses.
Usual FORTRAN rules apply, except continuation cards are not allowed. Also, a format should
be used for each single card (line) when entering or printing (punching) data. The regular
CMNITAB rule that an instruction must be punched on a single card holds for FORMAT "L"
instructions also. A discussion of how to construct FORTRAN format statments is beyond the
scope of this manual. It is assumed that anyone using the FORMAT "L" command is familiar
with the FORTRAN language. A discussion of FORTRAN is found, for example, in "A Primer For
FORTRAN IV," E. I. Organick, Addison-Wesley (1966).

The FORTRAN I and A format specifications may be used to input data, manipulate data and
output data of the same type. However, the E or F format specification must be used for any
kind of arithmetic operation. The X and H format specifications may be used as in FORTRAN.
The following: commands can be used with data that has been entered using the A or I format
specification: DEMOTE, DUPLICATE, EXCHANGE, FLIP, INSERT, MMATVEC, MOVE (and AMOVE or
MMOVE), MTRANSPOSE (and ATRANSPOSE) , MVECMAT, ORDER, PROMOTE, SEPARATE, and SORT. However,
caution should be exercised with the use of the commands DEMOTE, PROMOTE and SEPARATE as
difficulties may be encountered in printing the value zero.

4.5 Organizing A Set Of Instructions .

Flow charts are not necessary in writing a set of CMNITAB instructions. Perhaps this
frees the problem solver from a rigid approach to a problem. Sometimes it helps to keep a

record of how the columns in the worksheet are used and which columns contain what
information. This is particularly true if many operations are being performed or if you
need added assistance in interpreting a set of instructions some months later. An example
of a coding chart is given in NBS Handbook 101, page 261. Sometimes it helps to divide the
columns into multiples of ten and use a separate multiple for each different logical unit of
computations.

Cards which are completely blank are ignored in the execution of instructions or in the
interpretation of data (except when using READ "L") . In the printing of the LIST OF
COMMANDS, DATA AND DIAGNOSTICS the presence of a blank card causes a blank line to be
printed. In a lengthy set of instructions it is sometimes helpful to insert blank cards
between logical units (data, arithmetic, printing, etc.) to separate them.

Liberal use of descriptive words in writing instructions has many advantages despite the
temptation to avoid their use. Punching an instruction tends to flow more smoothly. It is

easier to read a set of instructions six months later. It is easier to communicate with
someone else. The fact that an CMNITAB set of instructions is often concise makes it

possible to use the LIST OF COMMANDS, DATA AND DIAGNOSTICS in a written report, particularly
if descriptive words have been used liberally.

Although an instruction can be punched anywhere on a card it is usually easiest to start
punching in card column 1. If this practice is generally followed, the indenting of
instructions from the left, say to card column 6, helps to offset one or more instructions
from the rest of the instructions. This can be done for intermediate calculations.

Another trick is to use cards of different colors for different units of a set of
instructions. Control cards might be punched on one colored card, data on another color,
executable instructions on another color, etc.

For greater emphasis, one user, in particular, inserts one space between letters and
four spaces between words in titles to be printed by CMNITAB, HEAD, TITLE and NOTE
instructions. (Don't put a space between letters in a command.)

42

4.6 Some Aids For Writing Sets Of Instructions .

(a) Large Amounts of Data. OMNITAB is basically designed to handle small to moderate
amounts of data. However, there are ways of handling large amounts of data. Often, all
that is required is to change the shape of the worksheet by using a DIMENSION instruction.
This will not be enough if one has more than 12,500 measurements. In this case there are
two tricks which are sometimes successful.

(i) Enter subsets of data one at a time and perform necessary calculations to
obtain partial results. After the last group has been processed, complete any
further calculations and print final results. With large amounts of data one often
wants the data summarized by groups and this technique can be useful.

(ii) Sometimes the data is punched on cards in the form of an array and the size
of the array exceeds the size of the worksheet. Furthermore, to obtain partial
results entire columns are needed so that it appears necessary to enter the 'entire
array. In this case, a simple trick is to reproduce the data deck and enter the
data into the worksheet twice. The first time, the first half of the data is read
into the worksheet and the second time the remaining half is read into the
worksheet. As an illustration consider the following problem and solution.

Suppose there are 1000 cards and twenty numbers on each card. The average (mean) and
standard deviation of the average are desired for each set of 1000 numbers. The total of
20,000 numbers is too large to go into the worksheet. A way to handle the problem is to
first reproduce the data deck. This is often more satisfactory than making two separate
runs (passes). Then the following concise set of instructions could be used. The set of
instructions appears to be far more lengthy than it really is because a liberal number of
comment cards has been used.

QMNITAB 6/16/70 compute means and their std. dev's for 20 sets of 1000 values
DIMENSION the worksheet to be 1000 rows by 12 columns
1/ SPOLYFIT column 1, weights 1.0, degree 0, x in column 1, put coeffs in col 1

$ S before polyfit is used to suppress automatic printing

$ polyfit of degree zero gives mean in row 1 and std dev of mean in row 2 of

$ column where coefficients are stored.

$ fourth argument is a dummy argument in polyfit of degree zero and can be any

$ valid column number.

$ note that column where coefficients are stored is the same as that where data

$ is stored. This is valid and saves space.

$ in this case it is more efficient to use polyfit than statis.

2/ ATRANSPOSE the array in 1,1 size 2x1 and put in 1,11

$ this changes a column into a row
3/ INCREMENT instruction 1 by 1, 0.0, 0, 0,

4/ INCREMENT instruction 2 by 0,0 0,0 1,0
$ we now have results for second set in second row
READ data into columns 1 *** 10

$ 1 *** 10 is equivalent to 1,2,3,4,5,6,7,8,9,10

(follow with data deck)

PERFORM instructions 1 thru 4, 10 times
READ data into columns 1***10 and 1 *** 10

$ a column number can be used twice, when 1 is used the second time, the 11th

$ column of data is put into column 1 replacing the data

$ which was entered there first.

(follow with second copy of data deck)

RESTORE instruction 1 to 1, 1.0, 0, 1, 1

$ this is necessary or the first argument of instr 1 would become illegal

43

PERFORM instructions 1 thru 4, 10 times
RESET 20

$ remember nrmax was 1000
PRINT columns 11 and 12

(b) Row Titles. Row titles can be obtained by reading in and printing the titles
using an A format, see section 4.4. One column should be allotted for each three characters
in the title, including blank spaces. Users of the NBS computer can allot one column for
each six characters. To print the coefficients from a quadratic least squares fit, which
are stored in column 45, one could use the instructions:

FORMAT A (6A3)

READ A format, 3 cards into columns 11 *** 16
estimate of a

estimate of b
estimate of c

FORMAT B (1X,6A3,1PE15.6)
RESET 3

PRINT B format, columns 11 *** 16 and 45

(c) Data Manipulation. In general, OMNITAB instructions operate on an entire column
down to NRMAX as in

ADD column 1 to column 2 and put the results in column 3

A number of instructions allow one to operate on only part of a column as in

SUM column 1, rows 3 thru 7, put result in column 2

Often, however, one needs to perform an operation on certain rows of a column when the row
numbers are only known through some property of the data. For example, one might wish to
find the sum of all numbers which have a positive value, but not know the row numbers
associated with these numbers. Moreover, the values which are needed might not be in
consecutive rows of the column.

This sort of problem occurs frequently, but can be resolved easily by a problem solver
using a basic technique. The trick is to construct a weight function which is a column of
ones and zeros. A one indicates the corresponding value in the data column has a certain
property and a zero indicates it does not have that property. In constructing the column of
weights one frequently uses the fact that, in OMNITAB, any number divided by itself equals
one, except when the number is zero, in which case the result is zero.

Suppose we wish to do a statistical anlysis of the even values in column 6, assuming all
the numbers are integers. The following set of instructions could be used:

DIVIDE column 6 by 2.0, put in column 7

FRACTIONAL part of column 7 put in column 7

DIVIDE column 7 by col 7 and put in col 7

SUBTRACT col 7 from 1.0 and put weights in col 7

STATISTICAL analysis of column 6 using weights in column 7 put in col 41

Often, the CENSOR command is very useful in this type of problem and also the
command MATCH. To find the sum of all positive values in column 14, one could use

CENSOR column 14 for 0.0, replace by 0.0, store in col 15
SUM col 15 put in column 15

Suppose we have a column of numbers, X, and we need to know the number of values in the
column which are less than some constant, k, (or greater than, equal to, etc.] Denote this

44

number by n(X LT k) . This problem arises frequently in one form or another. A solution is

given below.

First, compute Y = (X-k)/ABS(X-k) , which equals minus one if a value is less than k,

equals zero if the value equals k, and equals plus one if the value is greater than k. Then
proceed as follows:

To find : Perform operations successively on column Y

n(X GT k) (i) CENSOR for 0.0, replace by 0.0 (ii) SUM

n(X GE k) (i) CHANGE sign (ii) CENSOR for 0.0 replace 2.0
(iii) SUBTRACT 1.0 (iv) SUM

n(X EQ k) (i) CENSOR for -1.0, replace 1.0 (ii) SUBTRACT 1.0
(iii) CHANGE sign (iv) SUM

n(X LT k) (i) CHANGE sign (ii) CENSOR for 0.0, replace by 0.0 (iii) SUM

n(X LE k) (i) CENSOR for 0.0, replace by 2.0 (ii) SUBTRACT 1.0 (iii) SUM

There is a tendency to think that the instructions for array and matrix; operations are

only of use in problems related to matrix; algebra. However, they can be especially useful
in data manipulation and sometimes to remove the need for using stored instructions.

Commands like ATRANSPOSE, ADEFINE and MMATVEC are often helpful. As a further note, the

instructions APROPERTIES and MPROPERTIES can be used effectively to check calculations and

the punching of data cards after data has been entered into the worksheet.

(e) Branching. The very nature of OMNITAB makes logical branching seldom necessary
or desirable in the usual sense. Often the equivalent of logical branching can be obtained

by using a weight function as implied above. In PART C instructions are described for

branching in the REPEAT mode. The following is an example of a situation where logical

branching is normally required, but is only used indirectly in 'OMNITAB. Suppose we want to

take the logarithm to the base ten of the quotient of numbers stored in columns 11 and 12.

Except, that if the quotient is less than or equal to zero, we want to replace the logarithm

by a constant, say 3.8. These instructions could be used:

ANTILOG of 3.8 put in column 10

DIVIDE col 11 by col 12 and put in col 13

CENSOR col 13 for 0.0, replace by col 10, put in col 13

LOGTEN of column 13 is put in column 13

(f) Listing Of Instructions. To avoid the listing of a lengthy set of data or to

avoid the printing of arithmetic faults, particularly when it is known that division by zero

will happen frequently, one can use the instructions NO LIST or LIST (n) which are described

in section Cl.l.

4.7 An Example Of Table Making .

The need to form sub-tables from a set of data is common. It is easier to do in OMNITAB

than might appear. This is due to the basic structure of the system and the large set of

manipulative instructions available. A study of a problem posed by a potential user

illustrates some of the things that can be done. Consider the three-dimensional array

below, with data in rows, columns and layers:

45

/
7 7 7

I I I / 3

/ / / /

/ 7/ T
I I I / 2 Layer

/ / / /

r

Row

T
I

T
I

~7
/ i

/ / /

12 3

Column

The problem is to present a reduced two-way table (rows by columns) having in each cell
the mean and standard deviation of the measurements in the three layers. Four solutions are
given below for data taken from "An analysis of transformations," G. E. P. Box and D. R.
Cox, J. Royal Statist. Soc, B, 26, 223. (1964). The data occurred in a random order.
Solution 4 appeared in "CMNITAB - Rapid" Statistical Manipulation," J. R. Rosenblatt, B. L.

Joiner and David Hogben, U. S. Bureau of the Census, GE40, No. 6, Final 1970 Census Plans
and Four Programming Systems for Computerized Data Retrieval and Manipulation, New York,
N.Y., August 21, 1969. U.S. Government Printing Office, Washington, D.C., 1970.

People think differently and tend to approach a problem in different ways. It is
characteristic of CMNITAB that a problem can be solved in many different ways as is shown
here. This is important because it means that the user is free to problem solve in his own
way and is not tied to a rigid programming structure. By presenting four different
solutions to the same problem, it is hoped the flexibility of approach will be demonstrated.

The instructions which enter the raw data into the worksheet are given only once. A few
comments are included to aid the reader, but a complete understanding requires a careful
study and possibly some use of self- teaching. Solution 4 uses a PERFORM within a PERFORM.
Solutions 2 and 3 avoid one PERFORM by using the instruction MATCH. Solution 1 uses the
instruction ONEWAY and avoids the use of PERFORM completely. (The instructions MATCH and
ONEWAY were not in the system when solution 4 was written.) Solution 2 stores the means in
consecutive columns, whereas solution 3 stores the means in consecutive rows of the same
column. The outputs are the same for each solution; except the formats differ. Only the
output for solution 2 is shown. Some may object to the excessive amount of computing
resulting from the use of STATISTICAL analysis or ONEWAY analysis, but the computing time is
very small and costs little. The saving in programming effort more than offsets the
increase in computing cost unless, of course, one were to use the same set of instructions
many times. The NEW PAGE and ERASE instructions in solutions 2, 3 and 4 are only necessary
because all four solutions are given in the same set of instructions.

46

Output :

445.33333 271.33333 126.00000

201.83492 64.166450 40.595566

1082.0000 693.33333 331.33333

402.73068 298.82659 111.00150

2940.0000 1068.0000 794.66666

844.85265 501.00299 397.59946

List of Commands :

CMNITAB 8/4/70 CONSTRUCT TWO-WAY TABLE OF MEANS AND S.D. 'S

SET row numbers in column 1

121232113322111222133331323
SET column numbers in column 2

123331122131322322333211112
SET layer numbers in column 3

323113213232123213232111312
SET data in column 4

292 620 90 442 1140 634 370 338 566 3184 220 1198 170 266 210

332 1022 438 118 360 884 1568 3636 674 2000 1414 1070
I

$ begin solution 1

$ first instruction produces numbers 1 to 9 corresponding to each of 9 cells

SUBTRACT 1.0 from column 1, multiply by 3.0, add column 2, put in col 5

SONEWAY anal, of col 4, identification in col 5, store in cols 11 *** 14

MTRANSPOSE array in 1,13 size 9x2 to 1,21

APRINT array in 1,21 of size 2x3

SPACE 2

APRINT array in 1,24 of size 2x3

SPACE 2

APRINT array in 1,27 of size 2x3

$ begin solution 2

NEW PAGE
ERASE columns 5 *** 62

SUBTRACT 1.0 from col 1, mult by 3.0, add col 2, put in col 5

$ next instr. suppresses printing of arithmetic faults caused by div by zero

LIST 1

1/ MATCH col 5 with 1.0, extract from col 4, put in col 11

2/ DIVIDE col 11 by col 11 and put in column 10

3/ SSTATISTICAL anal, of col 11, weights in col 10, store in col 41

4/ INCREMENT instr 1 by 0, 1.0, 0, 1

5/ INCREMENT instr 2 by 1, 1,

6/ INCREMENT instr 3 by 1, 0, 1

PERFORM instrs 1 thru 6, 9 times

MOVE array in 9,41 size 1x9 to 4,41

APRINT 3,41 size 2x3
SPACE 2

APRINT 3,44 size 2x3

SPACE 2

APRINT 3,47 size 2x3

$ begin solution 3

NEW PAGE
ERASE columns 5 *** 62

LIST 1

SUBTRACT 1.0 from col 1, mult by 3.0, add to col 2, put in col 5

47

1/ MATCH column 5 with 1.0, extract col 4, put in col 6

2/ DIVIDE col 6 by col 6 and put in column 10

STATIS stores mean in row 3 of first storage col (41)

3/ SSTATISTICAL anal, of col 6, weights in col 10, store in col 41

4/ DEFINE 3,41 as 1,7
STATIS stores standard deviation in row 9 of first storage col (41)

5/ DEFINE 9,41 as 1,8
6/ INCREMENT instr 1 by 0, 1.0, 0,

7/ INCREMENT instr 4 by 0,0 1,0

8/ INCREMENT instr 5 by 0,0 1,0
next instruction is necessary, see PART C for definition of MATCH

9/ ERASE column 6

PERFORM instructions 1 thru 9, 9 times
next 4 instrs. turn a 9x2 matrix into a 6x3 matrix
MMATVEC column 7 into 1,11 size 3x3
MMATVEC column 8 into 1,14 size 3x3
MVECMAT 1,11 size 3x6 into column 20

MMATVEC column 20 into 1,21 size 6x3
MPRINT matrix in 1,21 size 6x3

begin solution 4

NEW PAGE
ERASE columns 5 *** 62
next two instructions get data into standard order
note, this is the first time -column 3 is used.
SORT column 2 and carry along columns 1, 3 and 4

SORT column 1 and carry along columns 2, 3 and 4

1/ MOVE 1,4 size 3x1 to 1,5
2/ SSTATISTICAL analysis of column 5, store in col 41 on
3/ DEFINE Yow 3 of col 41 as row 1 of column 6

4/ DEFINE row 9 of col 41 as row 2 of column 6

5/ INCREMENT instruction 1 by 3,0 0,0 0,0
6/ INCREMENT instruction 3 by 0,0 0,1
7/ INCREMENT instruction 4 by 0,0 0,1

8/ PERFORM instructions 1 thru 7, 3 times
9/ APRINT 1,6 size 2x3
10/ SPACE 1 row
11/ RESTORE instruction 3 to 3,41 1,6
12/ RESTORE instruction 4 to 9,41 2,6

next instr is necessary because we are working with sets of 3
RESET 3

FIXED 4

PERFORM instructions 8 thru 12, 3 times

STOP

48

5. THE CMNITAB II PROJECT

This section contains some brief notes on the development and management of CMNITAB II

which are not directly concerned with the use of CMNITAB II, Sections 5.1 through 5.3

contain a capsule summary of the documentation available to potential users of CMNITAB II.

Sections 5.4 and 5.5 contain a few remarks on questions often raised by programmers and
managers of computation facilities. Sections 5.6 through 5.10 describe some services,
intended to make the system more effective, which are provided by the user-oriented
management of the system at the NBS Gaithersburg laboratories.

5.1 Availability Of CMNITAB II .

"The CMNITAB II Magnetic Tape and Documentation Parcel", NBS Magnetic Tape 1 (1970) by
David Hogben, Sally T. Peavy and Ruth N. Varner is available from (formerly the

"Clearinghouse")

National Technical Information Service
Department of Commerce
5285 Port Royal Road

Springfield, Virginia 22151

The complete parcel consists of one reel of magnetic tape and documentation as follows:

(a) Magnetic Tape.

(16,806 records, 84 characters/record)

(2,788 records, 84 characters/record)

210 records, 840 characters/record,
blocked 10 cards /record)

718 records, 1320 characters/record,
blocked 10 lines /record)

File 1 contains the main program and subprograms of the CMNITAB II system. The test

problems (File 2), which are sets of CMNITAB instructions, are designed as bench marks for

use in the implementation of the system. XREF (File 3) consists of FORTRAN comment

statements which provide a guide for implementing CMNITAB II. File 4 is the output obtained

by using the test problems on the NBS computer.

The magnetic tape was prepared on a certified 2400 foot reel in BCD mode, 556 bpi

density, even parity, and 7-track. Tapes will be generated by NTIS in other modes, other

densities, even or odd parity, and 7 or 9-track, if so requested.

File 1. CMNITAB Master Program c

File 2. Test Problems (

File 3. XREF (

File 4. Test Results (

(b) Documentation

1. Source Listing Of CMNITAB II Program. Sally T. Peavy, Ruth N.

David Hogben. NBS Special Publication 339 (1970), 371 pages; $<

Varner , and
.75.

A Systems Programmer's Guide for Implementing CMNITAB II. Sally T. Peavy,

Ruth N. Varner, and Shirley G. Bremer. NBS Technical Note 550 (1970), 43

pages; 50 cents.

49

3. Test Problems and Results for CMNITAB II. Ruth N. Varner and Sally T. Peavy.

NBS Technical Note 551 (1970), 190 pages; $1.50.

4. CMNITAB II User's Reference Manual. David Hogben, Sally T. Peavy and Ruth N.

Varner.- NBS Technical Note 552 (1971), 262 pages; $2.00.

The publications listed in the documentation are for sale separately by the

Superintendent of Documents
U. S. Government Printing Office

Washington, D.C. 20402

The first publication should be ordered by SD Catalog No. C13.10:339. For the last three
publications, order by SD Catalog No. C13. 46:550, C13. 46:551 and C13. 46:552, respectively.

Computers were used, almost exclusively, to prepare all the above four publications.

The main sections of Special Publication 339 and Technical Note 551 are actual computer
output which was computer assisted phototypeset. The main part of Technical Note 550 and
some of the examples in PART C of this manual were put on magnetic tape and then printed by
a computer terminal.

A 12 pitch IBM 2741 terminal with ^ spacing was used, from start to finish, to prepare
this manual and the introductions to the other three publications. An ATS text-editing
system was used to go from one draft to another. Most of the text, by far, was printed
using a

.
10 pitch Delegate element (035) and reduced 16%. In some of the formulas other

typing elements were used (Delegate (070), 10 pitch Symbol (061) 12 pitch Symbol (004) and
Prestige Elite (012)). A few of the formulas were typed separately on a conventional
typewriter. Some of the actual computer output in the examples was reduced 25%.

5.2 CMNITAB II Master Program .

The CMNITAB II master program consists of 177 ANSI FORTRAN subprograms. A complete
listing of the program is available in NBS Special Publication 339 listed in section 5.1.

Considerable effort has been made to make OMNITAB II as machine independent as possible. In

addition to restricting the writing of subroutines to the ANSI FORTRAN language, several
additional steps have been taken. We exclude, to the best of our knowledge, any statements
which are permissible in ANSI FORTRAN, but which are not acceptable in any computing system
which might use OMNITAB. In the internal use of alphabetical information, the word length
has been restricted to three characters. The length of a printed page line has been
restricted to 120 characters.

5.3 Implementation Of OMNITAB II .

Because of the size of the CMNITAB II program, it requires a large computer. It has

been implemented on at least five different makes of computers (e.g., IBM 360/50 up, GE 625,

CDC 3800 and 6600, Burroughs' 5500, and UNIVAC 1108). Since considerable effort has been
made to make CMNITAB as machine independent as possible, implementation should have minimal
difficulties. The implementation of OMNITAB, however, still remains a task for a systems
programmer

.

The major problem in implementing OMNITAB relates to the size of the system. Overlay
and/or segmentation are necessary with most computer systems and probably desirable with the
largest computers or with computers using a time-sharing system. On most computers the
overlay problem is more or less solved.

The publication "A Systems Programmer's Guide to OMNITAB II," described in section 5.1,

should be helpful for the implementation of CMNITAB. OMNITAB has been successfully
implemented on several different computers without the aid of this publication. The present
version, Version 5.0, is more readily adaptable and together with the above documentation, a

systems programmer should not have too much difficulty.

50

5.4 Operat ing' Mode .

There has been much discussion in the computing literature concerning the pros and cons
of batch processing, remote batch processing and time-sharing.' Although the discussion is

important, it is somewhat irrelevant as far as the implementation and use of OMNITAB is

concerned. This manual describes a version of QMNITAB designed for use in the batch
processing mode. However, the very nature of CMNITAB is such as to make it readily
adaptable for time-sharing or remote batch processing. A time sharing version was developed
by Walter J. Gilbert and K. B. Weiner for the University of Maryland. A similar version is

in operation at the University of Rome, Italy. International Telecommunications Network,

Inc. adapted an earlier version of QMNITAB for use in the remote batch processing mode.

5.5 Efficiency .

The efficiency of a computer program 1ms long been a subject of interest. Actually,
efficiency lias only a limited meaning, except when the entire scientific effort is

considered. The developers of CMNITAB have been primarily concerned with the efficient and
accurate use of the computer to solve scientific problems, and to a lesser extent with the
computing efficiency of a particular subprogram. Although the emphasis has been on
developing accurate subprograms or subprograms which make the use of- CMNITAB easier,
indications are that CMNITAB is quite efficient in the use of computer time.

5.6 Development Of CMNITAB II .

The basic spirit and philosophy of CMNITAB remains virtually the same as it was eight
years ago. However, it is in a continual state of development. New commands and new
features are frequently added to the system. Existing commands are often revised, and
improved. There are a few commands in the original CMNITAB that remain to be implemented in

QMNITAB II. Some of these commands have been superseded by new commands, the rest we hope

to implement soon. The current version contains many commands which were unavailable three

years ago.

'

5.7 Comments From Users .

During the past two years 75 comments from NBS users have been responded to in a semi-

formal manner. The comments have been valuable and have led to the addition of new commands

and several improvements in existing commands. It is essential that a highly user-oriented
system like CMNITAB be responsive to users' needs. Consequently, comments from users have

been encouraged as much as possible.

5.8 Notices.

For users of the NBS computer only, a notice appears at the end of the LIST OF COMMANDS,

DATA AND DIAGNOSTICS which describes the changes made in the current version of
,

OMNITAB.

Each notice begins with *** WATSNU IN VERSION X.XX ***, where X.XX is the current version
number. This procedure replaces the command WATSNU of the original CMNITAB. In. this way
users are kept informed of the latest developments. A similar procedure could easily be

adopted at other computer centers.

5.9 Newsletters .

To supplement manuals and the notices, newsletters are distributed to users of the NBS

commputer describing recent developments in the CMNITAB system. Included in the newsletters

are descriptions of new instructions, modifications of existing instructions, errors

detected and corrected, novel uses of instructions, comments by users, etc..

5.10 Recorded Telephone Messages .

The Computer Services Division records messages giving the current status of the NBS

operating system. OMNITAB news may be given at the end of a message. The purpose of these

51

messages is to provide users with the very latest information before the computer is used.
Any difficulties will be reported as soon as they are detected. The" current message is
obtained by dialing extension 3261.

52

PART C

DESCRIPTIONS OF INSTRUCTIONS

Explanations are given on how to use each instruction; Examples are given to further
illustrate the use of a particular instruction or group of instructions. Examples are
tutorial and are not necessarily given to solve a particular problem. Synonyms and
abbreviations are not treated separately, but are listed under the principal instruction.
Each principal instruction is enclosed in a rectangular box. If an instruction has more
than one form, each optional form is enclosed in a trapezoidal box. Comments pertaining to

a group of instructions may appear at the beginning of a section or subsection. Within each
subsection, instructions are listed alphabetically. The commands appear alphabetically
under the subsection title.

Diagnostics (section B3) which may be printed by a particular instruction are included
in the description of that instruction. Diagnostics which may be printed by any one of a
particular group of instructions are given in the general description of the group at the
beginning of the section. Diagnostics which are applicable to a large number of
instructions are not discussed.

Instructions are grouped into ten sections which are further subdivided into
subsections. Thus, anyone interested in printing, for example, can immediately turn to the
appropriate subsection(s) to find which instructions can be used. A capsule summary showing
the commands in each section is given on the next two pages. Commands to suppress automatic
printing (section B1.10), abbreviations (section B1.12) and synonyms (section B1.13) are not
listed. Section 11 contains an index.

See section B1.2 and the beginning of PART D for a description of the notation used to

define the arguments of an instruction.

1. Entering And Printing Data
2. Arithmetic Operations
3. Data Manipulation
4. Statistical Analysis
5. Numerical Analysis
6. Repeat Mode
7. Array Operations
8. Matrix Operations
9. Bessel Functions

10. Thermodynamic s
11. Index To Commands Described In PART C

53

List Of Commands

1. Entering and Printing Data.

Control instructions: OMNITAB STOP
miscellaneous: DIMENSION SCAN NULL DUMMY "L"
listing: LIST NO LIST

Entering data: SET READ GENERATE
Printing data: PRINT ABRIDGE NPRINT

to modify: FIXED FLOATING FLEXIBLE
Detailed printing: HEAD NEW PAGE SPACE

notes: NOTE N0TE1 NOTE 2 PRINT NOTE
•page titles: TITLE1 TITLE2 TITLE3 TITLE4

Plotting: PLOT PAGE PLOT TITLEX TITLEY
Printing arrays .matrices APRINT MPRINT APRINT "L" MPRINT "L"
Punching cards: PUNCH PUNCH "L"
Format: FORMAT "L"

read with format: READ "L"
print with format: PRINT "L" ABRIDGE "L" NPRINT "L"

Magnetic tape, set: SET TAPE "L" CSET TAPE "L"
read from tape: READ TAPE "L" READ TAPE "L", "L"
read with count: CREAD TAPE "L" CREAD TAPE "L", "L"
write onto tape: WRITE TAPE "L" WRITE TAPE "L", "L"
manipulations

:

SKIP TAPE "L" ENDFILE TAPE "I II

REWIND TAPE "L" BACKSPACE TAPE "L"

2. Arithmetic Operations.

Simple arithmetic: ADD SUBTRACT MULTIPLY DIVIDE
power

:

SQUARE SORT RAISE
change sign: ABSOLUTE CHANGE
logarithms

:

LOGTEN LOGE
antilogs: ANTILOG EXPONENTIAL NEGEXPONENTIAL

Trigonometric: SIN COS TAN COT
degrees

:

SIND COSD TAND COTD
inverse: ASIN ACOS ATAN ACOT

degrees: ASIND ACOSD ATAND ACOTD
hyperbolic: SINH COSH TANH COTH

inverse: ASINH ACOSH ATANH ACOTH
Data summarization: INTEGER FRACTIONAL ROUND ACCURACY

sum: SUM PARSUM ROW SUM
product

:

PRODUCT PARPRODUCT EXPAND
properties

:

AVERAGE RMS MAXIMUM MINIMUM
Complex arithmetic: CADD CSUBTRACT CMJLTIPLY CDIVIDE

change coordinates; CPOLAR CRECTANGULAR

3. Data Manipulation.

Defining operations: RESET RESET "V"

COUNT DEFINE ERASE
Moving data: MOVE DUPLICATE PROMOTE DEMOTE

EXCHANGE CLOSE UP SEPARATE INSERT
Manipulative: FLIP CENSOR SHORTEN

sort: ORDER SORT HIERARCHY
search: MATCH SEARCH SELECT

54

4. Statistical Analysis.

Elementary: FREQUENCY HISTOGRAM NHISTOGRAM RANKS
Analysis: STATISTICAL ONEWAY TWOWAY
Regression: POLYFIT FIT CORRELATION
Probability: F PROBABILITY UNIFORM RANDOM

5. Numerical Analysis.

Error functions: ERROR CERF
Special integrals: ELLIPT FIRST ELLIPT SECOND STRUVE ZERO STRUVE ONE
Polynomials: HERMITE LEGENDRE LAGUERRE NORMLAGUERRE

Chebyshev: TCHEBYSHEV UCHEBYSHEV
Iteration: ISOLATE ISETUP ITERATE
Analysis: INTERPOLATE SOLVE MAXMIN HARMONIC
Integration: GAUSS QUADRATURE

6. Repeat Mode.

Repeated execution: PERFORM INCREMENT RESTORE
alternative: BEGIN FINISH

Branching

:

COMPARE IFEQ IFNE
two arguments: IFGE IFGT IFLE IFLT

7. Array Operations.

Arithmetic: AADD
ARAISE

ASUBTRACT AMULTIPLY ADIVIDE

Define, move operations: AERASE ADEFINE AMOVE ATRANSPOSE
Properties: AAVERAGE ACOALESCE APROPERTIES

8. Matrix Operations.

Defining operations: MDEFINE MERASE MIDENTITY
Moving operations: MMOVE

MDIAGONAL
MTRANSPOSE
MVECDIAGONAL

MMATVEC MVECMAT

Matrix algebra: MADD MSUBTRACT
multipl icat ion

:

MMULTIPLY MRAISE MSCALAR MKRONECKER
M(AD) M(DA) M(AV) M(V'A)

M(X'X) M(XX') M(X'AX) M(XAX')

Matrix analysis: MINVERT
MTRIANGULARIZE

MORTHO MEIGEN MPROPERTIES

9. Bessel Functions.

First, second of order 0,1: BJZERO BJONE BYZERO BYONE

modified: BIZERO BIONE BKZERO BKONE

extreme argument: EX I ZERO EXIONE EXKZERO EXKONE

Complex, angle=PI/4: KBIZERO KBIONE KBKZERO KBKONE

extreme real argument: KEXIZERO KEXIONE KEXKZERO KEXKONE

arbitrary angle: CIZERO CIONE CKZERO CKONE

extreme real argument: CEIZERO CEIONE CEKZERO CEKONE

Zeros: ZEROS BJZERO ZEROS BJONE

Order n, integral BESIN BESJN BESKN INTJO

10. Thermodynamics.

Units, temp, conversion: SI CGS FTOC CTOF

Molecular weight, ATOMIC MQLWT PARTFUNCTION

properties of state: BOLDIST EINSTEIN PFTRANS PFATOMIC

55

1. ENTERING AND PRINTING DATA

1.1 Control Instructions .

DDffiNSION, DUMMY "L", LIST, NO LIST, NULL, GMNITAB, SCAN, STOP

This changes the dimensions of the worksheet from 201 rows and 62 columns to the
specified number of rows and columns. The product of the number of rows and number of
columns must not exceed 12,500. The instruction DIMENSION 500x30 would be illegal. The
instruction is usually used only when one wishes to perform a few calculations on a large
set of data, e.g., DIMENSION 1000 x 12, or perform a lot of calculations on a small set of
data, e.g., DIMENSION 10 x 1000. The DIMENSION instruction is best put immediately after the
GMNITAB instruction and should never be put in the middle of a set of instructions as it

changes the entire configuration of the worksheet and could cause a value in one column to

end up in some other column. If the product 'r)x(c) exceeds 12,500; the following fatal
error will occur:

*** DIMENSIONED AREA EXCEEDS LIMIT

The command DIM is allowed as an abbreviation for DIMENSION.

This command was added to the system to allow users to add their own subroutines. The
use of DUMMY "L" requires an extensive knowledge of the internal structure of OMNITAB and
the command is not discussed any further in this manual.

The instruction LIST with an argument (n) controls the printing of diagnostics in the
LIST OF COMMANDS, DATA, AND DIAGNOSTICS according to the value of the integer n as follows:

0. Print nothing. LIST is synonymous with NO LIST; see below.
1. Suppress the printing of arithmetic diagnostics only.
2. Suppress the printing of informative diagnostics only.
3. Suppress nothing. LIST 3 is synonomous with LIST (see below).
4. Suppress the printing of both arithmetic and informative diagnostics.

As soon as a fatal error occurs, the effect of using NO LIST or LIST (n) is changed to

LIST for the remainder of the set of instructions.

LIST 1 (or LIST 2) is particularly useful when it is known that a large number of
diagnostics will occur and one does not want to have them printed. For example, in data
manipulation, it is common to divide numbers by themselves to obtain a column of weights.

If some of the numbers are zero, arithmetic diagnostics will result which may be numerous if

56

instructions are stored. These diagnostics can be avoided by using LIST 1 before the DIVIDE
command. (LIST could be used right after DIVIDE, if further diagnostics are needed.)

If the argument of LIST is less than zero or greater than four, the following
informative diagnostic is given:

* THIS COMMAND WAS NOT EXECUTED BECAUSE ITS MEANING WAS QUESTIONABLE

/ J
I LIST all diagnostics /

/ /

The command LIST without an argument is used to negate LIST (n) or NO LIST, see below,
and all subsequent instructions and diagnostics are printed. The instruction LIST is not
printed, however.

All instructions and data which appear after this card are not printed in the LIST OF
COMMANDS, DATA AND DIAGNOSTICS until the instruction is countermanded by LIST, see above, or
until a fatal error occurs. The instruction only affects the listing of instructions. The
most common use of NO LIST is just before READ to avoid the printing of a large set of data.
NO LIST is synonomous with LIST described above.

NULL

This instruction does nothing. It can be used as a stored instruction to erase an
existing stored instruction which is no longer needed.

This must be the first instruction of any set of instructions. All information on the
card is printed on each page. The information is printed in positions 21 through 100 on the
first printed line of each page. Hence, this instruction can be used to supply the date and
title for each set of instructions. More extensive titles can be printed as described in

section 1.4. The word PAGE and the page number is printed in positions 111 through 118.

OMNITAB initializes a set of instructions as follows:

(1) Each entry in the worksheet is set equal to zero.

(2) NRMAX is set equal to zero.

(3) The worksheet is dimensioned to have 201 rows and 62 columns.

(4) The variables V, W, X, Y and Z are set equal to zero.

(5) All stored instructions are destroyed.

(6) If it is not the first in a series of sets of instructions, it signals the end
of the previous set of instructions and causes the LIST OF COMMANDS, DATA, AND
DIAGNOSTICS to be printed.

(7) The values of the fundamental physical constants are set in the SI system.

(8) The argument of LIST (n) is set equal to 3.

(9) The argument of SCAN (c) is set equal to 80.

(10) All FORMATS are removed.

(11) The command PRINT is set in normal mode (readable printing)

.

(12) All TITLES are erased.

(13) All NOTEs are erased.

57

Caution: Since NRMAX is set equal to zero, data must be entered (e.g., using READ, SET
or GENERATE) before any executable instruction is used (e.g., ADD, STATIS or MINVERT) . Non-
executable instructions (e.g., NULL, FORMAT etc.) and stored instructions may precede the
entry of data. If an executable instruction is used before NRMAX is reset, the following
FATAL ERROR will occur (in most cases)

:

*** NRMAX=0

Normally, all 80 columns of a Hollerith card are examined in OMNITAB. However, if
certain information, particularly numbers, at the end of a card is to be ignored then the
SCAN (c) instruction can be used to do this.. For example, if data in card columns 73

through 80 are to be ignored by the computer use SCAN 72. The information although not
scanned will, however, be printed in the LIST OF COMMANDS. If the SCAN instruction has more
than one argument, the following informative diagnostic will be given:

* MORE THAN ONE ARGUMENT IN COMMAND. ONLY FIRST ONE IS USED

This could happen, for example, if the card containing SCAN 72 had a number in card columns
73-80.

This must oe the last card at the end of the last set of instructions. It signals the
end of the use of CMNITAB and returns control of the computer to the executive system. It

causes the last LIST OF COMMANDS, DATA AND DIAGNOSTICS to be printed. Forgetting to use a

STOP card is the major cause of not having a list of commands printed.

1.2 Entering Oata Into The Worksheet .

GENERATE, READ, SET.

Data on caids following the READ or SET instructions may appear anywhere on the card and
either with or without a decimal point. Data must be separated by a space, comma or word
(non-numeric characters). Integers less than -8191 must be punched with a decimal point.

Each of these commands may affect the value of NRMAX. If the number of rows required to

enter data into the worksheet exceeds NRMAX, then NRMAX will be automatically reset to agree
with the new number of rows. The value of NRMAX is never decreased by these instructions.
If fewer than NRMAX rows of data are entered into the worksheet, the numbers in the
remaining rows of the worksheet remain unchanged.

Comments are allowed on data cards. Consequently, the first command after data cards
must be spelled correctly. Otherwise, the card will be mistaken for a data card. Also, if

a comment is at the beginning of a card, it should not be one of the CMNITAB commands or it

will be treated as an instruction card.

In each of these commands, the following informative diagnostic will be given if an
attempt is made to enter too much data into the worksheet:

* TOO MUCH DATA IN SET, READ OR GENERATE, SPILL LOST

Stored instructions should not immediately follow data cards used by a READ or SET
instruction becuase instruction numbers may be interpreted as data.

58

Other forms of READ and SET are described in sections 1.7 and 1.10.

GENERATE from (K) in steps of (K) to (K) in steps of (K) to (K) ... in col (C)

This instruction generates a sequence of numbers with differences specified by the even
arguments in the instruction. To enter the consecutive numbers 11 through 20 in column 30,
one could use the instruction

GENERATE 11.(1.) 20. in column 30

Here, the parentheses are used in the usual mathematical context. Note, the number of
arguments in the instruction must be even and at least 4. The even arguments which
determine the step size can be positive or negative, but not zero. The instruction

GENERATE 1. (l.)10. (-l.)l. in column 32

could be written

GENERATE 1. (l.)10. (l.)l. in column 32

since the context dictates that the second step size must be negative. (In this instruction
the decimal points are not needed since the form of the instruction dictates that all
arguments except the last are constants.)

The difference between any tiro arguments on both sides of a step size should be an
integral multiple of the step size, indicating the number of steps to be taken. For
example, in GENERATE ll.(2.)21. IN COL 42, 21.-11. = 10. = 2(increment)x5(steps) . If such
is not the case, the last increment will not equal the designated step size. In the
instruction

GENERATE ll.(2.)21.7 into column 42

the numbers 11., 13., 15., 17., 19., 21. and 21.7 would be put in column 42. The last

number generated always equals the number on the right of the step size in the instruction.

READ data on following cards into columns (C)
,

(C) . .
. , (C) row by row

The data on the cards which follow are read into the specified columns, one row at a

time. Each card contains the data for one row. The numbers on the first card go into row 1

of all the specified columns; the numbers on the second card go into row 2, etc. This
continues until a valid instruction is encountered or until the columns are completely
filled.

(1) If any card is partially complete, zeros are entered in the remaining columns.

Blank cards are ignored as usual.

(2) The value of NRMAX is increased, if necessary, to agree with the number of cards
read.

(3) Any extra numbers on a card are ignored.

(4) Stored instructions should not immediately follow the data cards.

59

If NRMAX = 2:

READ data into columns 41, 42 and 43
11 12 13
21 22 23 24

31 32

would cause NRMAX to -be reset to 3; and the numbers 11.0, 12.0 and 13.0 to be put in row 1

of columns 41, 42 and 43 respectively; the numbers 21.0, 22.0 and 23.0 to be put in row 2 of
columns 41, 42 and 43; and the numbers 31.0, 32.0 and 0.0 to be put in row 3 of columns 41,
42 and 43. Only three column numbers are given in the READ instruction, so the fourth
number on the second card, 24, is ignored. Since there are only two numbers on the third
card, the third number is set equal to zero. If NRMAX had been 5 originally, it would not
be decreased to 3. The value of NRMAX is increased, if necessary, but never decreased by
the READ instruction.

The numbers on the following card(s) are put into the rows of the specified column. The
first number is put into the first row, the second number into the second row, etc. until a
valid instruction is encountered. The SET instruction is similar to the READ instruction,
except SET can only be used for one column at a time and the number to be put in a row does
not have to be put on a separate card but can follow the previous number on the same card.
Consequently, many numbers can be punched on a few cards and it is often preferable to use
SET when entering data into just a few columns. As in READ, the value of NRMAX is increased
if necessary. Also, stored instructions should not immediately follow the data. If there
are fewer numbers on the card than the value of NRMAX, the remaining numbers in the column
are unchanged. For example, if NRMAX =5 and column 27 contains the numbers 11.0, 12.0,
13.0, 14.0 and 15.0, then the result of using

SET into column 27

31 32 33

would be to put the numbers 31.0, 32.0, 33.0, 14.0 and 15.0 in the first five rows of column
27.

I J
I SET the data on the following cards, starting with row (R) of column (C) /

/ /

The SET instruction with two arguments performs exactly like the SET instruction with
one argument described above, except the entering of data begins with row (R) instead of row
1. All the rows before (R) remain unchanged. If NRMAX = 5 and column 27 contains the

numbers 11.0, 12.0, 13.0, 14.0 and 15.0, then the result of using

SET data into row 3 of column 27

33 34 35 36

would be to put the numbers 11.0, 12.0, 33.0, 34.0, 35.0, and 36.0 in column 27. NRMAX
would be reset to 6. Note, if R = 1, this instruction is equivalent to the SET instruction

with only one argument.

1.3 Common Printing Instructions .

ABRIDGE, FIXED, FLEXIBLE, FLOATING, NPRINT, PRINT.

The basic command for printing data in the worksheet is PRINT, which simply prints

columns of data in "readable form", a feature unique to OMNITAB II. Numbers in a column are

60

printed with the decimal point in a constant position determined by the values of the data
in a column. Traditional forms of printing are possible by using either of the commands
FIXED or FLOATING. Methods of obtaining detailed printing are described in section 1.4.
Optional forms of the printing commands are described in section 1.6.

ABRIDGE row (R) of columns (C)
,

(C) , ... (C)

Whereas PRINT causes an entire column to be printed, the command ABRIDGE prints only a
single row. The command is often useful in the repeat mode for printing results for each
iteration. Since only one row is printed, all of the features of PRINT are unavailable;
except numbers are still printed in "readable form" unless FIXED or FLOATING has been used.
If rows are printed successively, the decimal points will not necessarily line up as would
be the case with PRINT.

FIXED with (d) digits after the decimal point

Command forces any of the commands ABRIDGE, APRINT, MPRINT, NPRINT, or PRINT, which
follow, to print numbers in a column with exactly (d) digits after the decimal point. The
command remains in effect until countermanded by either FLEXIBLE or FLOATING (or another
FIXED). The single argument (d) must be an integer between and 8, inclusive. If not, (d)

is set equal to 8.

FLEXIBLE to return to readable printing

Removes the effect of using either FIXED or FLOATING. It returns the operation of
ABRIDGE, APRINT, MPRINT, NPRINT and PRINT to the normal mode of printing numbers in
"readable form". No arguments are used in the instruction. The command OMNITAB
automatically puts FLEXIBLE into effect.

Forces the commands ABRIDGE, APRINT, MPRINT, NPRINT, and PRINT to print numbers using
the scientific notation or floating-point form. The argument (s) determines the number of
digits printed. It must be an integer between 1 and 8, inclusive. If not, (s) is set equal
to 8. Numbers are automatically rounded to the specified number of digits.

A floating-point number is one which has been normalized to be a number, greater or
equal to one but less than ten, times the suitable power of ten. Each number consists, in

order from left to right, of (i) blank spaces, (ii) a minus sign if the number is negative
and a blank space if the number is zero or positive, (iii) the first significant digit, (iv)

the decimal point, (v) (s-1) digits after the decimal point, (vi) a plus or minus sign of
the power of ten needed to multiply the lormalized number to obtain the number in usual
form, and (vii) two digits giving the power of ten. The total number of characters,
including blanks, is 15. Let the letter b denote a blank space. If s=6, the number
-762.89357 would by printed as

bbbb-7. 62894+02

Some computers may put the letter E before the sign as in bbb-7.62894E+02.

61

/ J
I FLOATING with eight significant digits /

/ /

The command without an argument is synonomous with the above command with the argument
(s) automatically set equal to 8.

The letter N (for no new page) before PRINT implies the command (a) does not start
printing on a new page and (b) ignores all HEAD column commands (see section 1.4).

If the number of columns to be printed exceeds 8, columns are printed in blocks of 8 (or

less). The entire NRMAX rows are printed before proceeding to the next block. A blank line

is inserted between blocks. If NRMAX is less than or equal to 48, rows are printed in

blocks of five with a blank line between each block. If NRMAX exceeds 48, rows are printed
in blocks of ten. In all other respects NPRINT works like PRINT.

All NRMAX values in a column are printed in "readable form" unless FIXED or FLOATING is

in effect. All numbers are printed with 8 significant digits. (See section 1.6 for other
possibilities.)

(1) If NRMAX is less than or equal to 48, rows are printed in blocks of five with a

blank line between blocks. If NRMAX exceeds 48, rows are printed in blocks of ten.

(2) The word COLUMN and the column number are printed two lines above each column. For

an alternative, see discussion of HEAD in section 1.4. Fifteen positions (1%") are needed
for each column. At most 5 columns will fit on %h x 11" paper. COLUMN starts in position 4.

(3) Printing always starts on a new page.

(4) If there are three or more consecutive zeros at the bottom of a column, the zeros

are not printed. (Blank spaces are supplied.) If every value in a column is zero, the

entire column will be blank and no column heading will be supplied. This feature enables

users to space columns of data apart, if desired.

(5) Zero is printed as 0., rather than 0.000000+00.

(6) If the number of arguments exceeds 8 , columns are printed in blocks of 8 (or less)

.

The instruction
PRINT columns 1 *** 19

would give the same results as the three instructionr.

PRINT columns 1 *** 8

PRINT columns 9 *** 16

PRINT columns 17 *** 19

(7) If the range of the numbers in a column is too large to enable all numbers to be

printed in "readable form", then some of the numbers will be printed in floating-point form.

To emphasize this condition, an asterisk (*) is printed on the left of floating-point

numbers. If there are 3 or less orders of magnitudes, all numbers will be printed in

"readable form".

62

1.4 Detailed Printing .

HEAD, NEW PAGE, NOTE, NOTE1, NOTE2, PRINT NOTE, SPACE,
TITLE1, TITLE2, TITLE3, TITLE4

The commands in this section provide added flexibility in the printing of results,
particularly in the generation of reports. The commands N0TE1, N0TE2, and PRINT NOTE are
associated and are described jointly. Similarly, the commands TITLE1, TITLE2, TITLE3,
TITLE4 are described jointly. Only the commands in this section have a numeral in the
command. Care should be used in using these commands as experience shows that attempts to
provide special printing are prone to errors. If a dollar sign ($) (see section B1.5) is
any one of the characters in any of the instructions in this section, it does not stop
scanning of the rest of the card. It is treated like any other character. A dollar sign
($) in an instruction indicates that the phrase which follows is a descriptive aid to the
user and is not used by the instruction.

HEAD column (C)/ $ the 12 characters after / are used as column heading

Tiie 12 characters immediately following the slash (/) are used as a column heading in
place of the usual 12 character heading "COLUMN (C) " provided by OMNITAB. All
characters (including blanks) described in section B1.15 are counted. The command can be
used to provide headings for any of the commands FIT, PLOT, POLYFIT or PRINT. In the PRINT
command, three blanks appear on the left and the column heading appears on the right at the
top of each column. In the plot command, the column heading will follow ORDINATE and
ABSCISSA. The column heading will also be used by the commands FIT and POLYFIT in the title
and data headings. Any characters after the 12th character, following the slash, will be
ignored

.

The HEAD command may be used in conjuction with the first two optional forms of PRINT
described in section 1.6. It can not be used with a PRINT "L" instruction. The column
heading will be ignored and no diagnostic will be given.

The headings may be updated at any time by using a new HEAD instruction. Only 50 HEAD
commands are allowed at any one time. The use of additional HEAD instructions wipes out the
original ones to the extent that an excess number of headings is used. The 51st HEAD
instruction destroys the 1st, the 52nd destroys the 2nd and so on. If more than 50 HEAD
instructions are used, the following informative diagnostic is given

* MORE THAN 50 HEAD COLUMN COMMANDS HAVE BEEN USED.

The command HEAD cannot be stored for repeated execution. If it is included in a set of
stored instructions, the instruction is carried out at the time it is first encountered and
is then deleted from the set of stored instructions. The following informative diagnostic
is given:

* COMMAND NOT ALLOWED IN THE REPEAT MODE. EXECUTED BUT NOT STORED.

If the instruction is punched incorrectly, e.g., column number or slash is omitted, the

instruction is ignored and the following informative diagnostic is given:

* BAD HEAD. COLUMN GT 50 OR NO /

(The diagnostic GT 50 should be NUMBER INCORRECT.)

63

Assures printing will start on a new page. The command can be used with any of the
print commands which do not otherwise start printing on a new page: ABRIDGE, ABRIDGE "L"
APRINT, APRINT "L", MPRINT, MPRINT "L", NPRINT, and NPRINT "L"

One blank space should follow the command NOTE. The characters following NOTE through
card column 80, including the blank, are printed immediately. This instruction allows
additional details in printing. It is mainly used in conjunction with SPACE and ABRIDGE.
It may also be used with ABRIDGE "L", APRINT, APRINT "L", MPRINT, MPRINT "L", PLOT (at

bottom of page) , PRINT, PRINT "L" and any of the commands which provide a comprehensive
automatic printing of results (see section B1.10).

The command NOTE must not be stored. However, the command PRINT NOTE, which executes
N0TE1 and NOTE2, (see below) can be stored for repeated execution.

NOTE1 $ next 60 characters are stored for printing first half of note :

N0TE2 $ next 60 characters are stored for printing second half of note :

PRINT NOTE :

The commands N0TE1 and N0TE2 are automatically stored and are not executed until the
command PRINT NOTE is used. The commands may be used together to give a note occupying a

full page line (120 characters) . Either or both of the commands may be revised at any time

by simply writing a new instruction (s)

.

The commands can not be stored for repeated use. However, the command PRINT NOTE, which
executes the commands NOTE1 and NOTE2, may be stored.

One blank space should follow the command N0TE1. This is not necessary for N0TE2. For

NOTE1 and/or N0TE2, the first 60 characters after the numeral 1 or 2 are stored for later
printing. If less than 60 characters are used, blanks are supplied at the end. Actually,

only 59 characters of NOTE1 are printed; 60 of N0TE2.

The two-word command PRINT NOTE simply causes the information in the instructions NOTE1
and NOTE2 to be printed immediately. It is similar to NOTE; except it can provide a longer

note and can be stored for repeated use. If NOTE1 has not been used, the 60 characters

after NOTE2 will appear on the right hand half of the printed line and the first half will

be blank. Similarly, if NOTE2 has not been used, the 60 characters after N0TE1 will appear
on the left half of the line and the right half will be blank.

64

SPACE (p) lines on printed page

The specified number (p) of blank lines appear on a printed page. This command is used
chiefly in conduction with any of the commands ABRIDGE, ABRIDGE "L", APRINT, APRINT "L",

MPRINT, MPRINT "L", NOTE, NPRINT, NPRINT "L", and PRINT NOTE. The command SPACE has no

effect on any command which starts printing on a new page; such as PLOT, PRINT and PRINT

"L". If (p) is omitted, one blank line will be printed.

TITLE1 $ next 60 characters printed on first half of second line :

TITLE2 $ next 60 characters printed on second half of second line :

TITLE3 $ next 60 characters printed on first half of third line :

TITLE4 $ next 60 characters printed on second half of third line :

The four commands TITLE1, TITLE2, TITLE3, and TITLE4 provide a two line title which

appears on each page immediately after the first printed line containing "OMNITAB" and

"PAGE". Any or all of the instructions may be used. The 60 characters, including blanks,

after the numeral (1, 2, 3 or 4) are saved. Any or all of the instructions may be revised

by simply writing a new instruction. A title may be deleted by using an instruction (s) with

60 blanks after the command.

If a TITLE number is punched incorrectly, the following informative diagnostic is given:

* IMPROPER TITLE NUMBER, ASSUMED 1

The TITLE instructions can not be stored for repeated use. If an instruction is

numbered, the following informative diagnostic is given:

* COMMAND NOT ALLOWED IN THE REPEAT MODE. EXECUTED BUT NOT STORED

1.5 Plotting Data .

PAGE PLOT, PLOT, TITLEX, TITLEY

There are two commands, PAGE PLOT and PLOT, which enable the user to plot data using the

high speed printer. The two commands are essentially the same; except PLOT uses all 120

spaces of a printed line, whereas PAGE PLOT uses only 72 spaces on any line. Hence, a PAGE

PLOT will fit on an 8h x 11 piece of paper. Each of these- commands has five different forms

which control the scale of the vertical and/or horizontal axes. The commands TITLEX and

TITLEY, described jointly, enable the user to supply his own titles on the horizontal and

vertical axes respectively.

Each plot has 51 positions vertically and 101 positions horizontally. On each scale

plus signs are printed at every tenth position (left and right, top and bottom) .
Minus

65

signs are printed in the other positions. Six values are printed along each axis at equal
intervals. Floating-point numbers with 5 digits are used. If zero is on a scale, an X is
printed in the proper position.

At the top of each plot, a short description is given of the columns plotted. The same
column headings used by PRINT are given for ABS- (abscissa) and ORD- (ordinate), i.e.,
"COLUMN (C)" if a HEAD instruction has not been used or the heading if a HEAD instruction
lias been used. In addition, the plotting symbol (s) used are printed.

In each option any number of columns (functions) from one to five can be plotted against
the single abscissa. Plotting symbols are assigned as follows:

Column Plotting Symbol

1st
2nd *

3rd +

4th
5th

Where two or more symbols would coincide, a digit showing the actual number of points is

printed rather than any one of the above symbols. If 10 or more points coincide, then an X
is printed.

In the first option, the user does not liave to be concerned about the scales. Both the
vertical and horizontal scales are automatically determined by the instruction. The program
determines the largest and smallest values and uses these values as the extreme values of
each scale. If more than one function is plotted, the program finds the largest and
smallest values of all columns combined. The remaining four options provide the user with
flexibility in choosing scales which often improve the appearance of the plot. If a scale

is determined by the user, it may happen, accidently or intentionally, that some values fall

outside the specified range and cannot be plotted. In this case a diagnostic is printed at

the top of the plot showing the number of points plotted and the number which fall outside

the bounds.

Two lines are available at the bottom of a plot for printing additional information.

Often one or two of the commands TITLEX, NOTE or ABRIDGE are used.

The PAGE PLOT instructions are listed, but are not described as they closely resemble

the corresponding PLOT instructions below. The only difference is PAGE PLOT has 61 plotting

positions on the horizontal scale instead of 101. Scale values are printed at the 0th,

20th, 40th, and 60th positions. However, the commands TITLE2, TITLE3 and TITLE4 are ignored

by the command PAGE PLOT.

: PAGE PLOT columns (C) , (C) , ... (C) against column (C) :

/ /

/ PAGE PLOT cols (C) ... (C) , with vertical scale from (K) to (K) , against col (C) /

/ _____/

/ /

/ PAGE PLOT cols (C) ... (C) against col (C) with horizontal scale from (K) to (K) /

/ /

66

/

/ PAGE PLOT cols (C) . . . (C) vertical (K) to (K) vs col (C) horizontal (K) to (K)

/

/ J
I PAGE PLOT cols (C) . . . (C) vs col (C) , horizontal (K) to (K) , vertical (K) to (K) /

/ /

Page 68 shows an example of the use of the PAGE PLOT instruction. The plot shows S

straight lines, y = a+bx, with a = 4, 9, 16, 25 and 36; b = 2, 3, 4, 5 and 6; and x =

0. (l.)100.. This example of PAGE PLOT has been used to illustrate what happens when points
fall out of bounds. Consecutive digits have been used in TITLEX and TITLEY to show exactly
where the characters appear on the plot. The actual set of instructions used was:

OMNITAB 11/27/70 EXAMPLE OF PAGE PLOT
GENERATE 0. (1.0) 100. IN COLUMN 1

1/ ADD 2.0 TO COL 1, MULT BY 2.0, ADD 0.0, STORE IN COL 11

2/ INCREMENT 1 BY 1.0, 0, 1.0, 0.0, 1

PERFORM INSTRUCTIONS 1 THRU 2, 5 TIMES
TITLE1 PAGE PLOT OF FIVE STRAIGHT LINES USING 5TH. OPTION
TITLE3 Y = A+BX, A=4,9,16,25,36 B=2,3,4,5,6 X=0 (1)100

TITLEX 34567890123456789012345678901234567890123456789012345678901234567890
TITLEY 34567890123456789012345678901234567890123456789012345678901234567890
PAGE PLOT COLUMNS 11 12 13 14 15 VS COL 1 0.0 TO 60.0, 0.0 TO 250.0

PLOT columns (C) , (C)

,

(C) against column (C)

Both the horizontal and vertical scales are determined by OMNITAB. The instruction is

easy to use and requires no thought in planning. The options below provide more
flexibility.

/

/ PLOT columns (C)

/

(C) , with vertical scale from (K) to (K) , against col (C)

7

/

This option is identical to the first; except the range of the vertical scale (ordinate)

is chosen by the user rather than by the instruction. The scale does not have to be

increasing, i.e., the first (K) , which specifies the value at the bottom of the plot, can be

greater than the second (K) , which specifies the value at the top of the plot. The

following is a valid instruction:

PLOT column 41 from 10.0 to -10.0 versus column 14

Page 69 shows an example of the use of the second form of the PLOT instruction. The

functions sine, cosine, tangent and cotangent (see section 2.4) are plotted for x =

-5.0(0.1)5.0. The actual set of instructions used was:

OMNITAB 11/27/70 EXAMPLE OF PLOT

GENERATE -5.0 (0.1) 5.0 IN COLUMN 10

SIN OF COLUMN 10 PUT IN COLUMN 1

COS OF COLUMN 10 PUT IN COLUMN 2

TAN OF COLUMN 10 PUT IN COLUMN 3

COT OF COLUMN 10 PUT IN COLUMN 4

PLOT COLUMNS 1, 2, 3, AND 4 FROM -1.0 TO 1.0 VS COLUMN 10

67

OMNITAB 11/27/70 EXAMPLE OF PAGE PLOT PAGE 1

PAGE PLOT OF FIVE STRAIGHT LINES USING STH. OPTION

ABS- COLUMN 1

ORD- COLUMN 11 01, COLUMN 12 (*) , COLUMN 13 (+) , COLUMN 14 (,), COLUMN 15 (-),

NO. OF PTS. PLOTTED 263 NO. NOT PLOTTED [OUT OF BOUNDS) 242

3 2.5000+02+

4

5

6

7

8

9

1

2

3 2.0000+02+

4

5

6

7

8

9

1

2

3 1.5000+02+

4 - -

5 - -

6

7 - - ,
++

O _ _ - 4- **

+ +

+

+

++

+

+

AA

*

AA

AA

*

AA

AA

+ A*

+ AA

+ *

AA

9

1

2

3 1.0000+02+

4

5

6

7

A

AA

AA

AA

AA

A

AA

AA

9 .-++**/+**
1 --,+*...
2 --,+**..
3 5.0000+01+ -,++**... +

4 - , + * ..

5 --,+**...
6 --,+** ..

7 --,++*...
8 -,+**..
9 -+**...

-+ * ..

1 -AA

2 -..'

3 0.0000 X x

0.0000 2.0000+01 4.0000+01 6.0000+01

345678901234567890123456789012345678901234567890123456789012

68

03

I
8

-J wo ou "

5fe

S"

69

/
~~ —J

I PLOT cols (C)...(C) against column (C) with horizontal scale from (K) to (K) /

/
.

/

Here, the range of the horizontal scale (abscissa) is selected by the user and the
vertical scale is determined by the instruction.

/
~

~

" ~~T
I PLOT cols [C)...CC) vertical (K) to (X) vs col (C) horizontal (K) to (K) /

/ _ . /

Here, both the vertical scale and the horizontal scale are selected by the user.

/
'

7
/ PLOT cols (C)...(C) vs col (C) , horizontal (K) to (K) vertical (K) to (K) /

L /

This option is a slight modification of the preceding ODtion. The only difference is
that the four arguments, which specify the vertical and horizontal scales, appear at the end
of the instruction. Warning : unlike the previous instruction, the two arguments which
specify the horizontal scale come before the two arguments which specify the vertical scale.

: TITLEX. $ 60 characters after 2nd space following X are printed horizontally

: TITLEY $ 51 characters after 2nd space following Y are printed vertically

Two spaces should follow either command. The dollar sign ($) in the instruction
indicates that the information which follows is for the aid of the user and is not part of
the instruction. The 60 characters following the second space after the X of TITLEX will be
printed, centered, below the horizontal axis (x-axis or abscissa) on every subsequent page
printed by PLOT or PAGE PLOT. The 51 characters following the second space after Y of
TITLEY will be printed vertically to the left of the vertical axis (y-axis or ordinate) of
any subsequent plot. Note, TITLEX allows the use of 60 characters, but TITLEY only allows
the use of 51 characters. Either instruction may be revised at any time by simply rewriting
the instruction.

The TITLEX and TITLEY instructions must not be stored for repeated use. If they are
stored (numbered), the instruction is performed when it is first encountered and then
deleted from the set of stored instructions. As is the case with the other TITLE
instructions (section 1.4), an informative diagnostic is given.

1.6 Optional Forms Of Readable Printing .

ABRIDGE, NPRINT, PRINT

The basic forms of ABRIDGE, NPRINT and PRINT were described in section 1.3. For each of
these commands there are five additional forms. The options are described below for PRINT,
But are merely listed for ABRIDGE and NPRINT. The first two options of each instruction are
fairly simple. They simply change the number of digits printed from 8 to the specified
number. The last three options provide considerable flexibility at the expense of
simplicity. They are not recommended for the beginner. A liberal amount of self-t ching
(section B4.1) should help in understanding how to use these options effectively.

70

The first two options are closely related; actually, the first option is a simple form
of the second option. Also, the last three options are closely related; the third and
fourth options being special cases of the fifth option. The last three options are
described jointly.

The HEAD command is ignored by the last three options. None of the five options can be
used if FIXED or FLOATING is in effect. If FIXED or FLCATING has been used by mistake, the
following informative diagnostic is given:

* THIS COMMAND WAS NOT EXECUTED BECAUSE ITS MEANING WAS QUESTIONABLE

Each option has an argument which specifies the number of digits to be printed. If the
number exceeds 8, it is automatically reset to 8, but no diagnostic is given. If the
argument is less than 1, it is automatically reset to one, but no diagnostic is given.

/ 7
I ABRIDGE row (R) of columns (C)

,
(C) , ... (C) with (K) significant digits /

/ /

/ 7
I ABRIDGE row (R) of (C) ... (C) with (K) s. digits, (C) ... (C) with (K) , etc. /

/ I

I 7
I ABRIDGE row (R)

,
(K) cols, (C) (s) , (C) (s) , etc. $ max width 22, 3 blanks /

/ I

I 7
I ABRIDGE row (R) , (K) cols, (C) (s) (m) max width, (C) (s) (m) , etc. $ 3 blanks /

/ /

/ 7
I ABRIDGE row (R) of (K) cols, (C) (s) (m) (b) blanks, (C) (s) (m) (b) , . . . /

/ __/

/ 7
I NPRINT columns (C)

,
(C) , ... (C) with (K) significant digits /

/ I

I 7
I NPRINT columns (C) . .

.
(C) with (K) s. digits, (C) . . .

(C) with (K) s. digits etc. /

/ /

/
" ~~ 1

/ NPRINT (K) cols, (C) with (s) s.d., (C) with (s) , etc $ max width 22, 3 blanks /

/ I

I
'

" 7
I NPRINT (K) cols, (C) with (s) s.d. and (m) max width, (C) (s) (m) etc $ 3 blanks /

/ _^ /

71

/ 7
I NPRINT (K) cols, (C) with (s) s.d. (m) max width (b) blanks, (C) (s) (m) (b) etc /

/ /

/ 7
I PRINT columns (C) , (C) , ... (C) with (K) significant digits /

/ /

This instruction is the same as the normal PRINT instruction; except the number of
significant digits in each value of each column is changed from 8 to (K) . Although the
argument (K) represents a mathematical integer, it must be written with a decimal point to
avoid being mistaken for a column number. It can be any of the values 1.0, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, or 8.0. If (K) is not an exact integer, it is truncated to an integer, but
no diagnostic is given. For example, if K=2.3, K is automatically reset to 2.0.

/ 7
I PRINT columns (C) . . . (C) with (K) s. digits, (C) . . . (C) with (K) s. digits, etc. /

/ /

This is a special case of the option above. Here, the number of significant digits
printed can vary from one column (or group of columns) to another.

/ 7
I PRINT (K) cols, (C) with (s) s.d., (C) with (s) , etc $ max width 22, 3 blanks /

/ I

I 7
I PRINT (K) cols, (C) with (s) s.d. (m) max width, (C) (s) (m) , etc. $ 3 blanks /

/ I

I 7
I PRINT (K) cols, (C) with (s) s.d. (m) max width (b) blanks, (C) (s) (m) (b) , etc /

/ /

These three options allow the user to change the width of a column and the number of

blank spaces between columns, in addition to varying the number of digits printed. In each
case the first argument, (K), specifies the number of columns to be printed. In the last
option the argument (K) is followed by (K) sets of four arguments. Hence, the total number

of arguments in an instruction is (4K+1) . The arguments in each set, all integers, are:

(C) - the number of the column to be printed.
(s) - the number of digits to be printed.
(m) - the maximum width of a column, excluding blanks on the left.

(b) - the number of blank spaces to appear at the left of the column.

In the fourth option, the fourth argument of a set, (b) , is missing and it is

automatically set equal to (assumed to be) 3. Here, we have a total of (3K+1) arguments.

In the third option, both of the arguments (m) and (b) are missing. Automatically, (m) is

set equal to 22 and (b) is set equal to 3.

The argument (b) allows the user to provide different spacings between columns.

The meaning of the argument (m) can be easily misunderstood. It is not the actual

column width, but rather the maximum width that the user will tolerate. The actual width

72

may be smaller. Each column of data is examined to determine how many spaces are needed to
print all the numbers in the column in "readable form", i.e., without using floating-point
notation. For example, suppose s=4, NRMAX=2 and the numbers in column 7 are:

-76.24

.001593

then 9 spaces would be needed. Two spaces are needed for the sign and the decimal point.
Two spaces are needed on the left of the decimal point (for the largest number in absolute
value) and six places are needed after the decimal point (for the smallest number in
absolute value). In this example, if the maximum width (m)=10, the actual width would be 9.

On the other hand, if (m) were less than 9, the actual width would be the minimum width
required to print the numbers in floating-point form; in this case 9. The value of (m)

should always be greater than or equal to (s)+5. When numbers are printed in floating-point
form, the first blank space is used to print an asterisk.

In a normal PRINT instruction: (s)=8,. (m)=13 and (b)=15 minus actual width.

In the last three options, the normal column heading "COLUMN (C) " is used if the
column width is at least 12. If the width is less than 12, but greater than 6, the column
number (C) is printed, but the word "COLUMN" is omitted. If the column width is less than
6, no column heading is given.

Additional flexibility is provided in the last two options by allowing the user to print
numbers in either floating-point, fixed or integer form. Values of the arguments (s) and
(m) should be set as follows:

Argument Floating-point Fixed Integer

(s) number of digits . no. of decimal places
(m) -m -(m+1)

To obtain numbers in fixed or integer form, (m) should be large enough so that the largest
number can be printed in the allotted space. Asterisks are not printed when floating-point
numbers are requested. When numbers are printed as integers, a single blank space appears
on the right. An example is given below.

Suppose the numbers -1.2345678, 12.345678, 123.45678, and 1234.5678 are in row 1 of
columns 31 through 34 and NRMAX=1. The instruction:

PRINT 4.0 cols 31, 8, FLOATING 32, 4, -13 FIXED 33, 8, 22 READABLE 34, 0, -9 INTEGER

would give the following result. Digits are printed under the result so that the reader can
see how many blank spaces are printed and where they are located.

OMNITAB 11/24/70 TEST PRINT OPTION

COLUMN 31 COLUMN 32 33 34

-1.2345678+00 12.3457 123.45678 1235

123456789012345678901234567890123456789012345678901234567

The fourth option has been used, so (b)=3. The total column widths, including blanks, are

16, 16, 13, and 12. (The total width is 57.) Note, the word COLUMN does not appear above

columns 33 and 34 because the widths, excluding blanks, are only 9 and 10 respectively.

73

1.7 Formatted Printing And Reading .

ABRIDGE "L", FORMAT "L", NPRINT "L", PRINT "L", READ "L"

For added flexibility, these commands are available for printing and reading data
according to the user's own format. They are intended for use by anyone with a knowledge of
the FORTRAN language. Their use is not recommended for the novice. See section B4.4 for a
discussion of the use of formats. Six; additional commands are described in sections 1.8,
1.9 and 1.10.

Each instruction with a qualifier "L" must be preceded by the corresponding command
FORMAT "L". If the qualifiers do not agree, the following fatal error occurs with READ "L":

*** FORMAT NOT FOUND

and the following informative diagnostic appears with any print command:

* FORMAT NOT FOUND. READABLE FORMAT IS USED.

The HEAD instruction described in section 1.4 is ignored when printing according to a
specified format. The options described in section 1.6 are unavailable.

Remark .

.When a format is used, values for all column numbers are either read or printed. This
means that the format may pertain to more than one card or line. For example, for the
instructions

FORMAT A (20F4.0/20F4.0/5F4.0)
READ A 9 cards into cols 1 *** 45

(27 cards)

the data on card 1 would go into columns 1-20, the data on card 2 would go into columns 21
- 40 and the data on card 3 would go into columns 41 - 45. The remaining 24 = 3x8 cards
would be read in a similar manner. Note, the first argument of the READ A instruction is 9

not 27.

ABRIDGE "L" format, row (R) of columns (C) , (C) ...(C)

Print the designated row of the indicated columns according to the indicated format.

FORMAT "L" () :

Put regular FORTRAN format specification inside the parentheses. The format
specification can not be continued onto the next Hollerith card. Also, the format should
specify only one line of printing.

NPRINT "L" format, columns (C)
,

(C) , ... (C)

This command bears the same relation to PRINT "L" (below) that NPRINT does to PRINT.

Printing does not start on a new page.

74

PRINT "L" format, columns (C)
, (C) , ... (C)

Prints in accordance with the specified format. Printing starts on a new page. Most of
the special features of PRINT are not available.

READ "L" format, (n) cards into columns (C)
,

(C) ... (C)

One card is read, in accordance with the specified format, for each row of the indicated
columns. Note carefully, this command has one more argument than READ. The first argument
determines how many cards are to be read. Note, the data cards after READ "L", unlike READ,
are not listed in the LIST OF COMMANDS, DATA AND DIAGNOSTICS.

Unlike READ, READ "L" may be used in the repeat mode. Data to be entered into the
worksheet should immediately follow the external (unnumbered) PERFORM which executes the
READ "L" command. Extreme caution should be used (see section B2.5) when READ "L" is stored
for repeated use.

1 . 8 Printing Arrays And Matrices .

APRINT, APRINT "L", MPRINT, MPRINT "L"

The commands in this section permit one to print data in any part of the worksheet as

long as the rows and columns are consecutive. Printing does not have to start with row 1

and one can print from beloiv NRMAX. Although the array and matrix operation commands are
described in sections 7 and 8, the printing commands are described here.

Each of the four instructions has four arguments. The first two arguments determine the

location of the array (or matrix) in the worksheet by specifying the row-column location of
the value in the upper left-hand corner of the rectangular array. The last two arguments
determine the size of the array (or matrix) by giving the number of rows and number of
columns.

Each of the four commands causes printing to start where the last printing ended and
does not start printing on a new page. For the commands APRINT "L" and MPRINT "L", see
section 1.7 for further discussion on the use of formats. The HEAD command is ignored by
all four of the commands described here.

An error in any one of the four arguments, which defines an array (matrix) that will not
fit in the worksheet, will produce the following fatal error:

*** DEFINED MATRIX OVERFLOWS WORKSHEET

The commands APRINT and MPRINT are similar, but have a few minor differences. The
commands APRINT "L" and MPRINT "L" are synonomous.

APRINT the array in (R)
, (C) of size (r)x(c)

Printing is according to "readable form" unless FIXED or FLOATING is in effect. No
headings are supplied. If the number of columns (c) exceeds 8, the array is printed in
blocks of 8 columns Cor less), A space is inserted between each block.

75

Print the specified array in accordance with the prescribed FORMAT "L"

MPRINT differs from APRINT in two respects. First, numbers are printed in readable form
only if every number in the matrix can be printed without using floating-point notation. If
the range in the magnitudes of the values forces some values to be printed in floating-point
form, then all numbers are printed in floating-point form. Second, row/column number
headings are provided as in the example which follows. Since space is required for
headings, the matrix is printed in blocks of seven (or less) rather than 8.

Suppose, in columns 41 to 44, the numbers 11 to 14 are in row 6, the numbers
are in row 7 and the numbers 31 to 34 are in row 8. Then the instruction

21 to 24

MPRINT 6,41 size 3x4

would yield

ROW/COL
6

7

41

11.000000
21.000000
31.000000

42

12.000000
22.000000
32.000000

43

13.000000
23.000000
33.000000

44

14.000000
24.000000
34.000000

: MPRINT "L" format, the matrix in (R)
, (C) of size (r)x(c)

MPRINT "L" is a synonym for APRINT "L".

1.9 Punching Data Onto Cards .

PUNCH, PUNCH "L"

Data can be punched onto cards using either of the above commands.

PUNCH data in columns (C) , (C) (C) onto Hollerith cards

Provides NRMAX cards with numbers punched according to floating-point notation with
seven significant digits. A maximum of four columns can be punched at one time. If more
columns are needed, PUNCH "L" should be used. The first column of data punched appears in

the first 15 card columns, the next column of data in card columns 16 to 30, and so on up to

a maximum of 60 card columns. Each field of 15 characters constists of (i) three blanks,

(ii) a minus sign if the number is negative, otherwise an additional blank, (iii) the first

significant digit, (iv) the decimal point, (v) the last six significant digits, (vi) a plus
or minus sign denoting sign of the exponent of 10, and (vii) two digits giving the power of
ten. The commands FIXED and FLOATING govern the operation of PUNCH.

76

Data in the specified columns is punched according to the indicated format. Unlike the
command PUNCH, this command allows the punching of more than four columns.

1.10 Use Of Magnetic Tapes .

BACKSPACE TAPE "L", CREAD TAPE "L", CREAD TAPE "L" "L", CSET TAPE "L",
ENDFILE TAPE "L", READ TAPE "L", READ TAPE "L" "L", REWIND TAPE "L",
SET TAPE "L", SKIP TAPE "L", WRITE TAPE "L", WRITE TAPE "L" "L"

Each tape' operation command has two words and at least one qualifier. The second word
is always the word TAPE. The qualifier, see section B1.16, is always any one of the six
letters A, B, C, D, E, or F (without quotation marks) and refers to the tape unit being
used. If there are two qualifiers, the first qualifier refers to the tape unit and the
second qualifier refers to the corresponding FORMAT "L". Five of the instructions use the
argument (n) records. Here, a record is 80 characters or one complete Hollerith card image.

If the tape unit specified is anything other than one of the letters A through F, the
following fatal error occurs:

*** INCORRECT TAPE UNIT. COMMAND IS NOT EXECUTED

If two qualifiers are used and the instruction FORMAT "L" with the same qualifier has not
been used before, then the following fatal error occurs with input commands (read, set):

*** FORMAT NOT FOUND

and the following informative diagnostic is given with the WRITE TAPE commands:

* FORMAT NOT FOUND. READABLE FORMAT IS USED.

(See section 1.7.

)

As in section 1.2, input instructions (CREAD TAPE, CSET TAPE, READ TAPE and SET TAPE)

may affect the value of NRMAX.

Mien using tape operation commands with the NBS computer an ASG control card must be

used for tape assignment. Users of other computers should check with their computer

services staff to find out what control cards are needed, if any. The ASG card must appear

immediately after the RUN card (see section B1.4). It has the form

8WS ASG "L"

or
8WS ASG "L"=USERTP

where "L" is the appropriate tape unit (one of the letters A through F) and USERTP is the

name (six; characters) or number of the magnetic tape reel which is to be used. If the

second form is not used, then a scratch tape is used. The option W, after the multiple 7-8

punch, permits tape writing. The option S indicates that the tape is to be saved.

The following commands may not be used in the REPEAT MODE (see section B2.5): CREAD TAPE

"L", CSET TAPE "L", READ TAPE "L", and SET TAPE "L". When incrementing tape operation

commands, which have been stored, the first qualifier (tape unit) should be incremented by

zero (without a decimal point)

.

BACKSPACE TAPE "L" unit, (n) records

This instruction backspaces tape "L" by (n) physical tape records.

77

CREAD TAPE "L" unit, using (n) records, into columns (C)
,

(C) , ... (C)

Tliis command is similar to the READ TAPE "L" command; except the value (n) specifies the
number of records to be read instead of terminating input with a record of zeros as in READ
TAPE "L".

CREAD TAPE "L" "L" unit and format, using (n) records, into cols (C) ... (C)

Similar to command above; except a FORMAT "L" is referenced.

CSET TAPE "L", using (n) records, into column (C)

This command is similar to the SET TAPE command (see below). Here, the indicated number
of records is read, whereas the SET TAPE command reads data until a record of zeros is

encountered

.

/ 7
I CSET TAPE "L" unit, using (n) records, into row (R) of column (C) /

/ /

Similar to above command; except data is entered into row (R) and below rather than
starting with row 1.

ENDFILE TAPE "L" unit

This instruction writes anend-of-file mark on the specified tape, "L". The use of the
instruction is highly recommended, if the tape is to be reused.

READ TAPE "L" unit into columns (C) , (C) ... (Q

This command is similar to the ordinary READ command; except data is read from the
specified tape unit rather than from cards. Reading of data continues until a record of
zeros is encountered; not a blank record.

READ TAPE "L" "L" unit and format into columns (C) , (C) , ... (C)

Same as above; except tape is read using the specified format.

REWIND TAPE "L" unit

The tape specified by "L" is rewound to the beginning of the tape position.

78

SET TAPE "L" unit into column (C)

This command is similar to the SET command; except data is read from the specified tape

unit rather than cards. Reading of data continues until a record of zeros is encountered;

not a blank record.

/ J
I SET TAPE "L" unit starting with row (R) of column (C) /

/ /

Same as above; except first datum is entered into row (R) instead of row 1.

SKIP TAPE "L" unit, forward (n) records

The specified tape "L" is moved forward (n) physical records.

WRITE TAPE "L" unit from columns (C) , (C) ... (C)

This command is similar to the PUNCH command; except data is recorded on magnetic tape

rather than cards. Each card image, as in PUNCH, is set up as an output record on the tape.

NRMAX records are written as usual and in addition a record of zeros is written at the end.

As in PUNCH, the maximum number of arguments (column numbers) is four.

WRITE TAPE "L" "L" unit and format, from columns (C) , (C) ... (C)

Same as above; except records are written according to the referenced format.

79

2. ARITHMETIC OPERATIONS .

This section describes the instructions for: performing simple aritlimetic, the use of

logarithms, computing trigonometric functions, data summarization, and performing complex

aritlimetic. Many of these instructions can produce aritlimetic diagnostics. See section

B3.3 for further details.

None of the instructions in this section have any effect on the value of NRMAX. Be sure

that data has been entered into the worksheet by using one of the instructions described in

section 1.

2.1 Simple Aritlimetic (3 Arguments) .

ADD, DIVIDE, MULTIPLY, RAISE, SUBTRACT

Each of these commands has three arguments. The first two arguments may be either

constants or column numbers. The third argument is always a column number.

ADD (E) to (E) and put results in column (C)

Performs the indicated addition, row by row.

DIVIDE (E) by (E) and put the results in column (C)

If division by zero is attempted, the result is set equal to zero and the following

arithmetic diagnostic is given:

** DIVISION BY ZERO, RESULT SET=0, (n) TIMES

The command DIV is an acceptable abbreviation of DIVIDE.

MULTIPLY (E) by (E) and put the results in column (C)

Performs indicated multiplication. The command MULT is an acceptable abbreviation of

MULTIPLY.

RAISE (E) to (E) and put in column (C)

Either of the first two arguments can be negative, zero or positive. However, if _ the

first argument is less than zero and the second argument is not an integer, or if the first

argument is zero and the second argument is negative and not an integer, the exponent is set

equal to zero, the result is set equal to one , and the following arithmetic diagnostic is

given:

** NEGATIVE ARGUMENT TO SQRT, LOG OR RAISE

80

The instruction
RAISE -2.0 to -3.0 and put in column 45

is valid and puts -1/8 into column 45. But the instruction

RAISE -2.0 to -3.5 and put in column 45

would produce the above arithmetic fault and diagnostic.

Remember, zero raised to any power is zero and any non-zero value raised to the zero
power is one. (Also, 1.0 raised to any power is 1.0.)

RAISE can produce numbers which are too big (overflow) or too small (underflow) . Let El
and E2 be any values specified by the first two arguments. If E2 is a positive integer,
then the absolute value of El raised to E2 must not exceed the largest number allowed in the
computer (i.e., about 10

38 for the NBS computer). Otherwise, overflow will occur. If E2 is
not an integer and El is positive, overflow will also occur when E2xlog(El) exceeds 88.0.
If E2 is an integer greater than or equal to 60, then El must be positive.

SUBTRACT (E) from (E) and put in column (C)

Carefully note the use of "from" in the instruction which indicates the direction of the
subtraction. The instruction

SUBTRACT the value 4.0 from 7.0 and put in column 26

would put the value 3.0 into column 26, whereas the instruction

SUBTRACT the value 7.0 from 4.0 and put in column 26

would put the value -3.0 into column 26. The command SUB is an acceptable abbreviation of
SUBTRACT.

2.2 More Simple Arithmetic .

ABSOLUTE, CHANGE, SORT, SQUARE

The instructions in this section do not have three arguments. ABSOLUTE, SORT and SQUARE
have two arguments. The first argument can be either a column number or a constant. The
second argument is always a column number. CHANGE lias a variable number of arguments, which
are all column numbers.

ABSOLUTE value of (E) put in column (C)

All values are made positive (non-negative) and put in the designated column. If any
value is positive or zero, it remains unchanged. If any value is negative, it is multiplied
by -1.0 to make it positive. The command ABS can be used as an abbreviation of ABSOLUTE.

CHANGE the sign of values in columns (C) , (C) ... (C)

This command has the effect of multiplying each designated column by -1.0. Hence, the
instruction

CHANGE the sign of columns 17, 36 and 48

81

would be equivalent to the three instructions

MULTIPLY 17, -1.0, 17

MULTIPLY 36, -1.0, 36

MULTIPLY 48, -1.0, 48

Note, this is the only instruction in section 2 which can perform an operation on

several columns simultaneously. [See section B2.8 for a complete list of similar

instructions.) All the arguments in this instruction are column numbers. Note also, that

the results are put back into the designated columns and not into new columns.

SQRT of (E) put in column (C)

Computes the square root [SQRT) of a number or column of numbers. If any number is less

than zero, the result is set equal to zero and the following arithmetic diagnostic is given:

** NEGATIVE ARGUMENT TO SQRT, LOG OR RAISE

The instruction

SQRT of 25.0 put in column 7

would put the value 5.0 into each row of column 7 and is equivalent to the (more

complicated) instruction

RAISE 25.0 to the 0.5 power and put in column 7

SQUARE of (E) put in column (C)

Multiplies the first argument by itself. The instruction

SQUARE column 1 and put in column 2

is equivalent to both of the instructions

MULTIPLY 1, 1, 2

and

RAISE 1, 2.0, 2

2.3 Logarithms, Exponentiation .

ANTILOG, EXPONENTIAL, LOGE, LOGTEN, NEGEXPONENTIAL

Each of these commands has two arguments. The first argument can be either a constant

or a column number. The second argument is always a column number.

ANTILOG of (E) put in column (C)

This is the inverse function of LOGTEN, below. If y = log 10 (x), then x is the

anti logarithm of y.

82

EXPONENTIAL of (E) put in column (C)

Computes e
x

, for x = (E) . (The value of x may be negative.) The command EXP can be

used as an abbreviation of EXPONENTIAL. If any value of x exceeds 88.0 (in NBS UNIVAC 1108

computer), overflow occurs. The result is set equal to zero and the following diagnostic is

given:

** EVALUATION OF EXPONENT PRODUCES OVERFLOW

The EXPONENTIAL instruction can be considered the antilogarithm (to base e) of LOGE (below)

.

LOGE of (E) put in column (C)

Computes the natural logarithm or logarithm to the base e. If an attempt is made to-

compute the natural logarithm of zero or a number less than zero, the result is set equal to

zero and the following arithmetic diagnostic given:

** NEGATIVE ARGUMENT TO SQRT, LOG OR RAISE

The command LOG is an acceptable abbreviation for LOGE. It should not be mistaken as an

abbreviation for LOGTEN.

LOGTEN of (E) put in column (C)

Computes the common logarithm (logarithm to the base ten) . If any value is less than

or equal to zero, the result is set equal to zero and the following arithmetic diagnostic

given:

** NEGATIVE ARGUMENT TO SQRT, LOG OR RAISE

NEGEXPONENTIAL of (E) put in column (C)

Similar to the EXPONENTIAL instruction above; except the exponent is -(E). The

instructions

EXPONENTIAL of -3.6 put in column 54

and

NEGEXPONENTIAL of 3.6 put in column 54

are equivalent.

2.4 Trigonometric Functions .

COS , COT , SIN , TAN
COSD, COTD, SIND, TAND

ACOS , ACOT , ASIN , ATAN
ACOSD, ACOTD, ASIND, ATAND
COSH, COTH, SINH, TANH

ACOSH, ACOTH, ASINH, ATANH

- Radians
- Degrees
- Inverse in radians
- Inverse in degrees
- Hyperbolic
- Inverse hyperbolic

83

The basic trigonometric functions available are cosine (COS) , cotangent (COT) , sine
(SIN) and tangent (TAN). There are five additional variations of each basic command. If
the argument of a trigonometric function is in degrees, the letter D is appended to the
command. For the evaluation of the inverse trigonometric functions, the letter A must
precede and be attached to the command. The letter H appended to a command will indicate
that the hyperbolic function is requested.

The following three arithmetic faults are possible in the execution of these
instructions:

** ARGUMENT OUT OF BOUNDS TO INVERSE FUNCTION
** ARGUMENT TOO LARGE FOR SIN OR COS, ZERO RETURNED (n) TIMES
** TRIG FUNCTION NOT DEFINED RESULTS SET=0, (n) TIMES

The NBS computer (UNIVAC 1108) bound for cos(x), cot(x), sin(x) and tan(x) is |x| < 10
7

.

Each instruction has two arguments. The first argument can be either a constant or a
column number. The second argument is always a column number. In the descriptions below,
let x be a number determined by the first argument in an instruction and let y by the
corresponding number in column (C) . Here, log is used to imply log to the base e.

ACOS of (E) put in column (C)

The principal. value (between and tt/2 radians) of arc cosine is computed; y = cos" (x),

ACOSD of (E) put in column (C)

The principal value (between and 90 degrees) of arc cosine is computed.

ACOSH of (E) put' in column (C)

Computes the inverse hyperbolic cosine; y = log{x + /(x 2
- 1)}.

ACOT of (E) put in column (C)

The principal value (between -tt/2 and +tt/2 radians) of arc cotangent is computed; y
cot_1 (x).

ACOTD of (E) put in column (C)

The principal value (between -90 and +90 degrees) of arc cotangent is computed.

ACOTH of (E) put in column (C)

Computes the inverse hyperbolic cotangent of (E)
; y = ^log{(x+l)/ (x-1)}.

84

ASIN of (E) put in column (C)

The principal value (between and tt/2 radians) of arc sine is computed; y = sin-'(x).

ASIND of (E) put in column (C)

The principal value (between and 90 degrees) of arc sine is computed.

ASINH of (E) put in column (C)

Computes the inverse hyperbolic sine of (E)
; y = log{x + /(x 2 + 1)}.

ATAN of (E) put in column (C)

The principal value (between -tt/2 and +tt/2) of arc tangent is computed; y = tan_1 (x).

ATAND of (E) put in column (C)

The principal value (between -90 and +90 degrees) of arc tangent is computed.

ATANH of (E) put in column (C)

Computes the inverse hyperbolic tangent of (E)
; y = %log((l+x)/(l-x))

.

COS of (E) put in column (C)

Computes the cosine of angle (s) in radians; y = cos(x).

COSD of (E) put in column (C)

Computes the cosine of angle (s) in degrees.

COSH of (E) put in column (C)

Computes the hyperbolic cosine of (E)
; y = h(e + e),

COT of (E) put in column (C)

Computes the cotangent of angle (s) in radians; y = cot(x) = cos(x)/sin(x)

.

85

COTD of (E) put in column (C) :

Computes the cotangent of angle (s) in degrees.

COTH of [E) put in column (C) :

X ~X X ~x
Computes the hyperbolic cotangent of (E) ; y = (e + e)/(e - e).

SIN of (E) put in column (C) :

Computes the sine of angle (s) in radians; y = sin(x)

.

SIND of (E) put in column (C) :

Computes the sine of angle (s) in degrees.

SINH of (E) put in column (C) :

X ~x
Computes the hyperbolic sine of (E) ; y = h(e - e)

.

TAN of (E) put in column (C)

Computes the tangent of angles in radians; y = tan(x) = sin(x)/cosCx)

.

TAND of (E) put in column (C) :

Computes the tangent of angle (s) in degrees.

TANH of [E) put in column (C) :

Computes the hyperbolic tangent of (E)
, y = (e - e)/(e + e).

2.5 Triple Operations .

All the commands in sections 2.1, 2.2 [except CHANGE), 2.3 and 2.4 have an additional

form with two additional arguments for triple operations. (Hence, commands in section 2.1

will have 5 arguments, whereas those in sections 2.2, 2.3 and 2.4 will have 4 arguments.)

Also, there are two commands in section 2.6, FRACTIONAL and INTEGER, which have this added

form. The three operations are:

1. The operation specified by command (e.g., DIVIDE)

2. Multiplication
3. Addition

86

For example, if the numbers 1, 2 and 3 are in column 17, the instruction

SQUARE column 17, multiply by 2.0, add 1.2, put in column 18

would put' the numbers 3.2, 9.2 and 19.2 into column 18. This instruction is equivalent to
the three instructions:

SQUARE 17, 18

MULTIPLY 18, 2.0, 18
ADD 1.2, 18, 18

The abbreviations described in the other sections can also be used in the triple
operation instructions.

If the number of arguments in an instruction is incorrect (should be 3 or 5 for those in
section 2.1 and 2 or 4 for those in sections 2.2, 2.3 and 2.4), the following fatal error
occurs

:

*** (n) IS AN ILLEGAL NUMBER OF ARGUMENTS

Since all triple operation instructions bear the same relationship to the single
operation instructions described previously, all the optional forms are merely listed on the
next page (alphabetically) without a description. The five argument instructions are
separated from tiie four argument instructions. The first instruction in each group is boxed
as usual, but the remaining instructions are just listed.

87

5 Arguments

/

/ ADD CE) to (E) , multiply by (E) , add (E)
,
put in column [C)

DIVIDE (E) by (E) , multiply by (E) , add (E)
,
put in column (C)

MULTIPLY (E) by (E) , multiply by CE) , add CE) ,
put in column (C)

RAISE CE) to CE), multiply by CE) , add CE) ,
put in column (C)

SUBTRACT CE) from (E) , multiply by CE) , add CE) ,
put in column CC)

4 Arguments

/ ABSOLUTE value of CE) , multiply by CE) , add CE) ,
put in column CC)

/

ACOS of CE) ,
multiply

ACOSD of (E)
, multiply

ACOSH of CE) , multiply
ACOT of (E) multiply
ACOTD of CE) multiply
ACOTH of (E) multiply
ANTILOG of (E) multiply
AS IN of (E) multiply
ASIND of CE) multiply
ASINH of (E) multiply
ATAN of (E) multiply
ATAND of (E> multiply
ATANH of CE) multiply
COS of CE) multiply
COSD of CE) multiply
COSH of CE) multiply
COT of CE) multiply
COTD of (E) multiply
COTH of CE) multiply
EXPONENTIAL of CE) multiply
FRACTIONAL part of (E) multiply
INTEGER part of CE) multiply
LOGE of (E) multiply
LOGTEN of (E) multiply
NEGEXPONETIAL of (E) multiply
SIN of (E) multiply
SIND of CE) multiply
SINH of CE) multiply
SQRT of (E) multiply
SQUARE of CE), multiply
TAN of (E) multiply
TAND of CE) multiply
TANH of CE), multiply

by CE) . add CE),

by CE) ,
add CE),

by (E)
,
add CE),

by CE) ,
add (E),

by (E) add CE),

by CE) ,
add CE),

by CE) ,
add CE),

by CE) add CE),

by CE) add CE),
by CE) add CE),
by CE) add CE),
by CE) add CE),
by CE) add (J),
by CE) add CE),
by CE) add CE),
by CE) add CE),
by (E) add CE),
by (E) add (E),

by CE) add CE),
by CE) add CE),

by CE) add CE),

by CE) add CE),

by CE) add (E),

by CE) add (E),

by CE) add CE),
by CE), add CE),

by CE), add CE),

by CE), add CE),

by CE), add CE),

by CE), add (E),

by CE), add CE),

by CE), add CE),

by CE), add CE),

put in column CC)

put m column (C)

put in column CC)

put in column (C)

put in column CC)

put in column CC)

put in column CC)

put in column CC)

put in column CC)

put m column (C)

put in column CC)

put in column (C)

put in column (C)

put in column CC)

put m column (C)

put in column CC)

put in column (C)

put in column (C)

put in column CC)

put in column CC)

put m column CC)

put in column CC)

put in column CC)

put m column (C)

put in column CC)

put in column (C)

put in column CC)

put in column CC)

put in column CC)

put in column CC)

put m column CC)

put in column CC)

put in column CC)

2.6 Data Summarization.

ACCURACY, FRACTIONAL, INTEGER, ROUND - Numbers
PARSUM, ROW SUM, SUM - Sums
EXPAND, PARPRODUCT, PRODUCT - Products
AVERAGE, MAXIMUM, MINIMUM, RMS - Properties

Numbers

This instruction is used to see how closely two (sets of) numbers agree. In ACCURACY X,

Y, Z

Z = -LOGTEN
|

(X-Y)/Y| , if X f Y and Y f

Z = -LOGTEN |X-Y| , if X f Y and Y =

Z = 8, if X = Y

But Z is never less than -8.0 or greater than +8.0 (in the NBS computer).

The instruction gives a measure of the number of leading digits in X which are the same

as the number of leading digits in Y. If the numbers 1.2347680, 1.2345378, 2.2234568,

1.234.5678, 1.2345679, -1.2345678, 76.234567, 2.4691356 and 0.0 are in column 31, the

instruction

ACCURACY of column 31 compared to 1.2345678 put in column 32

would put the numbers 3.7900571, 4.6144509, .096367388, 8.0000000, 7.0731966, -.30102999, -

1.7835463, 0.0 and 0.0 into column 32. This instruction will give different answers from

the instruction

ACCURACY of 1.2345678 compared to column 31 put in column 32

The answers here would be 3.7901275, 4.6144404, .35188114, 8.0000000, 7.0731966, -.30102999,

.0070906878, .30102999 and -.091514938. A negative result indicates the two values being

compared either do not agree in the first digit or they differ with respect to sign. An

example of two numbers which do not agree in their leading digit (and actually differ in

order of magnitude) is given above by X = 76.234567 and Y = 1.2345678; the accuracy reported

is -1.7835463. An example of two numbers which do not agree in sign is X = -1.2345678 and Y
= 1.2345678; here the accuracy reported is -.30102999.

This instruction was added to aid the developers of OMNITAB in testing the accuracy of

instructions, but it is available for use by all users. The above description of accuracy

was used extensively by R. H. Wampler in "A report on the accuracy of some widely used least

squares computer programs.", J. Am. Statist. Assoc, 65, 549-565 (1970). It is also used

by the FIT and POLYFIT instructions.

FRACTIONAL part of (E) put in column (C)

The portion of each value to the left of the decimal point is dropped and the remainder

is put in the designated column. The sign of each number is kept. The instruction

FRACTIONAL part of column 7 put in column 8

applied to the numbers 7.35, -12.82, 26.00 and 0.96 in column 7, would put 0.35, -0.82, 0.00

and 0.96 into column 8. The instruction is the complement of INTEGER, below.

89

INTEGER part of (E) put in column (C)

INTEGER is the complement of the previous instruction, FRACTIONAL. The portion of each
value on the right of the decimal point is chopped and the remainder is put in the
designated column. For the above numbers in column 7, namely 7.35, -12.82, 26.00 and 0.96,

the instruction
INTEGER part of column 7 put in column 9

would put the numbers 7., -12., 26. and 0. into the first four rows of column 9.

ROUND the numbers in column (C) to (n) digits and put in column (C)

The numbers are rounded to the specified number of digits in accordance with the
standard rules for rounding. The argument (n) must be an integer from 1 to 8.

(1) If the (n+l)st digit is less than 5, the portion beyond the nth digit is dropped
and the nth digit is unchanged. E.g., 1234.5678 rounded to 3 digits is 1230.

(2) If the (n+l)st digit is greater than 5, the nth digit is increased by 1. Or, if

the (n+l)st digit equals 5 and any digit on the right is not zero, the nth digit is

increased by 1. E.g., 1234.5678 rounded to 5 digits is 1234.6.

(3) If the (n+l)st digit is 5 and all digits on the right are zero, the nth digit is

rounded to the nearest even digit, i.e., if the nth digit is even, it is unchanged and if

the nth digit is odd, it is increased by 1. The number 123.4500 rounded to 4 digits is

123.4, whereas the number 986.75 rounded to 4 digits is 986.8.

Sums

PARSUM column (C) and put in column (C)

The partial sums of the first named column are put in each row of the second named
column. If the numbers 1, 7, 0, 3 and 5 are in column 1, the instruction

PARSUM 1,2

would put the numbers 1, 8, 8, 11 and 16 into the first five rows of column 2.

ROW SUM columns (C) , (C) , ... (C) and put in column (C)

The instruction must have at least 4 arguments. Each row of the last named column
contains the sum of the numbers in the corresponding row of the other columns. For the

following numbers:

COLUMN 2 COLUMN 4 COLUMN 1 COLUMN 6 COLUMN 11

2.0 1.0 3.0 2.0 8.0

3.0 4.0 0.0 3.0 10.0
5.0 2.0 4.0 1.0 12.0

90

the numbers in column 11 would result from using the instruction

ROW SUM columns 2, 4, 1 and 6 and put in column 11

The command ROWSUM (one word) is synonymous with ROW SUM (two words) both here and in
the two options which follow.

/ J
I ROW SUM columns (C) through (C) and put in column (C) /

/ /

This instruction performs the same operation as the one above. It has exactly 3

arguments (all column numbers) . The instruction finds the sum, row by row, for all columns
between the first named column and the second named column, inclusive, and puts the result
in the third named column. In the example above, if columns 4, 1 and 6 were changed to 3, 4

and 5, the instruction

ROW SUM columns 2 through 5 and put in column 11

would give the same results in column 11.

/ 7
I ROW SUM the entire worksheet and put results in column (C) /

/ /

Each row of the worksheet is summed and put in the corresponding row of the named
column. For example, row 17 of the named column (if NRMAX is greater than 16) would contain
the sum of the numbers in all 62 columns of row 17 (unless DIMENSION has been used) of the
worksheet, including row 17 of the named column. The instruction

ROW SUM 23

is equivalent to the instruction
ROW SUM 1,62,23

and also to the instruction
ROW SUM 1 *** 62, 23

SUM the rows of column (C) and put in column (C)

Finds the sum of numbers in the first named column and puts the single result into every
row of the second named column. If the numbers 2.0, 7.2 and 1.3 are in column 34, the
instruction

SUM column 34 and put in column 56

would put 10.5, 10.5 and 10.5 into column 56. Two additional forms of SUM are described
below.

/ T
I SUM column (C) , rows (R) through (R) , and put in column (C) /

/ /

This instruction is the same as the one above; except only the indicated consecutive
rows are summed. If the values 6.3, 2.0, 7.2, 1.3 and 4.8 are in column 11, the instruction

SUM column 11, rows 2 through 4, and put in column 12

91

would put 10. S, 10.5, 10.5, 10.5 and 10.5 into the first five rows of column 12. The second
argument does not have to be less than the third argument, i.e. the following instruction
would be equivalent to the previous one

SUM 11, 4, 2, 12

/ 7
I SUM column (C) , rows (R)

, (R) , ... (R) and put in column (C) /

/ /

The instruction must have at least 5 arguments. It is similar to the two instructions
above; only the specified rows are summed and they need not be consecutive. The instruction
above could be written:

SUM column 11, rows 3, 2 and 4, and put result in column 12

Products

EXPAND (E) to power (p) in increments (i) and put in column (C) and succ. cols

Provides for the exponentiation of a constant or column to the integral power (p) in

equal, integral steps (i) . Results are put in successive columns starting with the column
designated by the 4th (last) argument. The number of columns used is the same as the number
of steps, which is (p)/(i). The exponent is always equal to the increment size (i). The
instruction

EXPAND 2.0 to the power 8 in increments of 2 and put in column 11

would put the values 4., 16., 64. and 256. into each row of columns 11 through 14. The

number of columns used for storing results is 8/2 =4. An additional form of the

instruction is described below.

Caution: The power (p) should be an integral multiple of the increment (i) . If not, an
additional increment is used. E.g., the instruction

EXPAND 2.0, 7, 2, 11

would produce the same answers as the instruction above.

/ 7
I EXPAND (E) to power (K) in steps of (K) and put in col (C) and successive cols /

/ /

Same as above, but the power and the increment do not have to be an integer. The

instruction

EXPAND 4.0, 2.5, 0.5, 11

would put the 0.5, 1.0, 1.5, 2.0 and 2.5 powers of 4.0, namely 2., 4., 8., 16. and 32., into

each row of columns 11 through 15. The number of columns used for storing results is

2.5/0.5 = 5.

Caution: The quotient of the power (2nd argument) and the increment size (3rd argument)

should be an integer. If the quotient is not an integer, an additional step is taken by the

instruction, but no diagnostic is given. For example, the instruction

92

EXPAND 4.0, 2.7, 0.5, 11

would be performed like

EXPAND 4.0, 3.0, 0.5, 11

PARPRODUCT of column (C)
, put partial products in column (C)

Puts partial products of successive rows of the 1st named column into the 2nd named
column. If the numbers 1., 3., 2., 5., 0. and 4. are in column 23, the instruction

PARPRODUCT of column 23 put in column 24

would put the numbers 1., 3., 6., 30., 0. and 0. into the first six rows of column 24. If

any product exceeds the capacity of the computer, zero is returned for that particular row
and all subsequent rows. No diagnostic is given. If the numbers in the first named column
are consecutive integers (starting with 1 or 2), the nth row will contain n factorial.

PRODUCT row by row of cols (C)
,

(C) , ... (C) put into column (C)

The instruction must have at least four arguments, all column numbers. For the
following numbers

COLUMN 2 COLUMN 4 COLUMN 1 COLUMN 6 COLUMN 11

2.0 1.0 3.0 2.0 12.0
3.0 4.0 0.0 3.0 0.0
5.0 2.0 4.0 1.0 40.0

the numbers in column 11 would be the result of using the instruction

PRODUCT row by row of columns 2, 4, 1 and 6 put in column 11

/ J
I PRODUCT row by row of columns (C) through (C) put in column (C) /

/ = /

This instruction performs the same type of operation as the one above. It has exactly
three arguments. The instruction finds the product of the the numbers in each row of the
consecutive columns from the 1st named column to the 2nd named column, inclusive, and puts
the results into the 3rd named column. If columns 4, 1 and 6 were changed to 3, 4 and 5 in

the example above, the instruction

PRODUCT row by row of columns 2 through 5 put in column 11

would give the same answers in column 11. The 1st argument should be less than the 2nd

argument

.

93

Properties

AVERAGE the values in column (C) and put the result in column (C)

For the n=NRMAX numbers x. in the 1st named column, the instruction computes

x = E. t x./n
i=l r

and puts the result into each row of the 2nd named column.

MAXIMUM value of the numbers in column (C) put in column (C)

Finds the largest value in the 1st named column and puts the single result into each row
of the 2nd named column. The command MAX is an acceptable abbreviation of MAXIMUM, both
here and in the option below.

- _ __ , ^
/ MAXIMUM of col (C) put in col (C) , corresp. value of (C) in (C), (C) in (C) . . . /

/
,

/

If ' the numbers 3.1, 17.6, 9.2, 11.6 and 8.3 are in column 51 and the numbers 127.8,
92.3, 15.3, 224.7 and 75.4 are in column 61, the instruction

MAXIMUM of col 51 put in col 52, corresponding value of 61 put in col 62

would put the number 17.6 (row 2 of column 51) into each of the five rows of column 52 and
the number 92.3, in the corresponding 2nd row of column 61, into the first five rows of
column 62. The instruction must have an even number of arguments.

MINIMUM value of the numbers in column (C) put in column (C)

Finds the smallest value in the first named column and puts the single result into each
row of the second named column. The command MIN is an acceptable abbreviation of MINIMUM,
both here and in the option below.

r '

~~~ *~ ~ z
/ MINIMUM of col (C) put in col (TJ) , corresp. value of (C) in (C) , (C) in (C) . . . /

/
. „_ /

If the numbers 3.1, 17.6, 9.2, 11.6 and 8.3 are in column 51 and the numbers 127.8,
92.3, 15.3, 224.7 and 75.4 are in column 61, the instruction

MINIMUM of col 51 put in col 52, corresponding value of col 61 put in col 62

would put the number 3.1 (row 1 of col 51) into each of the five rows of column 52 and the
number 127.8, in the corresponding row (1) of column 61, into the first five rows of column
62. The instruction must have an even number of arguments.

RMS of column (C) put in column (C)

94



For the n=NRMAX values x. in the 1st named column, the instruction puts the root mean

square (RMS)

A.n 2,
/I. -. x./n

i=l 1

into each row of the 2nd named column. For the numbers 1., 2., 3., 4. and 5. in column 28,

the instruction

RMS of column 28 put in column 29

would put the value 3.3166248 (= /S5/5 = /ll) into the first five rows of column 29.

2.7 Complex Arithmetic .

CADD, (DIVIDE, CMULTIPLY, CPOLAR, CRECTANGULAR, CSUBTRACT

Any complex number has [in rectangular coordinates) a real and an imaginary part. In

OMNITAB, two columns are needed for each set of complex numbers. The first number in each

pair is the real part and the second number of the pair is the imaginary part. Otherwise,

the arithmetic operations are similar to those in section 2.1. However, triple operation

instructions are not available and no abbreviations are allowed. Two commands are available

for changing from one coordinate system to the other; CPOLAR and CRECTANGULAR.

The last two arguments of each instruction are always column numbers. The remaining

arguments may be either constants or column numbers.

A complex' number z can be written as z = x + iy, where x is the real part and y is the

imaginary part. This notation will be used in the descriptions below. If there are two

complex numbers, they will be represented by z^ = Xj + ivj and z
2

= x
2

+ iy2> For further

details the reader may consult, for example, R. V. Churchill, "Introduction to Complex

Variables and Applications", McGraw-Hill Book Company (1948).

To assure that the complex arithmetic instructions give accurate results, internal

calculations are done using double precision arithmetic.

CADD real (E) imag (E) to real (E) imag (E) put real in col (C) imag in col (C)

The two (sets) of complex numbers specified by the first four arguments are added and

then put in the columns indicated by the last two arguments. Tf the two numbers added are

z
1
and z

2
, then the result z = z.. + z

2
is given by:

x = x, + x
2
and y = y1

+ y2
-

CDIVIDE real (E) imag (E) .by real (E) imag (E) put real in col (C) imag in (C)

Performs the indicated complex division. For z = ^^l z
2 f

z 2 ^ Q
'

x =
(Xlx 2

+
yiy 2

)/(x^ + y
2

2
) and y = (x^ - x^)/^ + y2

)

.

If division by zero is attempted, the result is set equal to zero and an arithmetic

diagnostic is given.

95



CMULTIPLY real (E) imag (E) by real (E) imag(E) put real in col (C) imag in (C)

Performs the indicated complex multiplication. For z = z z .,

x = x
]
_x

2
- y1y2

and y = x^ + x^.

CPOLAR for x = (E)
, y = (E) put rho in col (C) , theta in col (C)

This command changes complex numbers in the rectangular coordinate system to numbers in
the polar coordinate system. For x = rcosQ and y = rsinG, the instruction puts

r = /(x 2
+ y

2
) and 9 = tan_1 (y/x)

in the last two columns. The principal value of the arctan is taken between -it/2 and +ir/2.

If x = 0, 9 is set equal to zero and an arithmetic diagnostic is given.

CRECTANGULAR for rho = (E) , theta = (E) put x in col (C) , y in col (C)

Changes from polar coordinates to rectangular coordinates. This instruction is the
inverse of CPOLAR above, The results

x = rcos9 and y = rsin9

are put in the last two columns.

CSUBTRACT real (E) imag (E) from real (E) imag (E) put real in (C) imag in (C)

Performs the indicated subtraction. For z = z - z , the instruction puts

x = x
2

- x
x
and y = y2

- yx

in the last two columns.

96



3. DATA MANIPULATION .

This section contains five types of instructions for data manipulation which enhance
problem solving considerably. Caution . Several of the instructions in this section affect
the value of NRMAX. Also, in several instructions it is possible to make a mistake in using
an argument, which will define a location outside the worksheet. When this happens an
appropriate diagnostic will be given. Some of the instructions in this section, although
powerful, are a little tricky to comprehend. A liberal amount of self- teaching can help
immensely; see section B4.1.

3.1 Defining Operations .

COUNT, DEFINE, ERASE, RESET, RESET "V"

Care should be exercised in using RESET and the last three forms of DEFINE to avoid
using an argument which defines a number of rows which exceeds the number of rows in the
worksheet (normally 201) or to define a row number outside the worksheet.

COUNT length of column (C) and put in column (C)

Starting from the bottom, row NRMAX, the instruction searches for the first row of the
first named column containing a value which is not equal to zero. The number of this row is

the "count", which is put into each row of the second named column. If NRMAX=S and the
numbers 1, 2, 3, 4 and are in column 11, then the instruction

COUNT of column 11 put in column 12

would put the number 4.0 into the first five rows of column 12.

DEFINE (E) into column (C)

If the first argument is a constant, the constant is put into each row of the designated
column. The instruction

DEFINE the value 9.6 into column 3

is equivalent to the instruction

ADD the value 0.0 to the value 9.6 and put in column 3

If the first argument is a column number, the instruction simply moves one column of
numbers to another column. The instruction

DEFINE column 11 into column 33

is equivalent to the instruction

ADD the value 0.0 to column 11 and put in column 33

and also to the instruction (see section 3.2)

97



MOVE the array in 1,11 of size **NRMAX** x 1 to 1,33

I
~ '

7
/ DEFINE the constant (K) into row (R) of column (C) /

/ /

The constant (K) is put into a single location in the worksheet. The row number (R) can

exceed NRMAX.

/
' ' ~ — '

7
I DEFINE the value in row (R) of column (C) into column (C) /

/ /

The number in row (R) of column (C) is put into each row of the second named column.

The number may be located below NRMAX, nevertheless it is put in rows 1 to NRMAX of the

second named column. If 3.6 is in row 7 of column 11 and NRMAX = 5, the instruction

DEFINE the value in 7,11 into column 12

would put the numbers 3.6, 3.6, 3.6, 3.6 and 3.6 into the first five rows of column 12.

/
" '

'

' 1
I DEFINE the value in row (R) of column (C) into row (R) of column (C) /

/ ___ . „ /

A single number is moved from any specified location in the worksheet to any other
location. A number can be moved from above NRMAX to below NRMAX, or vice versa. The
instruction

DEFINE the value in 7,11 into 4,32

is equivalent [see section 3.2) to the instruction

MOVE the array in 7,11 of size lxl to 4,32

ERASE columns (C)
, (C) ... (C)

Zeros are put into each row of the designated columns. The number of arguments is

variable. Unlike the option below, which has no arguments, the value of NRMAX is unaffected

by the instruction.

/ 7
I ERASE the entire worksheet /

/ /

Each entry in the entire worksheet is set equal to zero. The value of NRMAX is reset to

zero. Unlike an OMNITAB instruction, this is the only initialization that is performed.

This instruction may be used at the start of a new subset of instructions when one does not

want to destroy any previously used titles, notes or stored instructions.

RESET nrmax to equal (r) rows

Simply resets the value of NRMAX to the specified number of rows. (If the argument is

not an integer, it is truncated to an integer.) Sometimes it is wise to use the instruction

RESET before using a READ or SET instruction. See, also, section B1.6.

98



RESET "V" variable equal to (K)

The qualifier "V" can be any one of the letters (without quotation marks) V, W, X, Y or

Z. (If the argument in the instruction is an integer (without a decimal point), it is

automatically converted to a constant.) See sections B1.7 and B1.16 for further details.

5.2 Moving Data .

DEMOTE, DUPLICATE, EXCHANGE, MOVE, PROMOTE

The commands DUPLICATE and MOVE actually operate on arrays. However, since they are

commonly needed and used, they are described here rather than in section 7 along with the

regular array operation commands. These commands are often used by those who are unfamilar
with the array operation commands described in section 7. See section 7 for further
details.

DEMOTE by (r) rows, col (C) into col (C) , col (C) into col (C) , ... etc.

For each pair of columns, each value in the 1st named column is moved (pushed) down (r)

rows and put in the 2nd named column. The first (r) rows of the 2nd named column will

remain unchanged. NRMAX is increased by (r) . The number of arguments is always odd and at

least 3. This instruction is essentially the reverse of PROMOTE, described below. If the

numbers 1 to 8 are in column 26 and the numbers 41 to 48 are in column 27, the instruction

DEMOTE by 3 rows column 26 into column 27

would put the numbers 41, 42, 43, 1, 2, 3, 4, 5, 6, 7 and 8 into column 27. NRMAX would be

increased by 3 = (r) from 8 to 11. This instruction is actually equivalent to the two

instructions
MOVE 1,26 size 8x1 to 4,27
RESET 11

Caution, the instruction demotes each column (denoted by the even arguments)

independently and consecutively. Hence, for the numbers above, the instruction

DEMOTE by 3 rows col 26 into 27, 27 into 27

would put the numbers 41, 42, 43, 41, 42, 43, 1, 2, 3, 4 and 5 into column 27. NRMAX would

be 11.

(If the argument (r) is negative, the DEMOTE instruction is synonymous with the

instruction using PROMOTE for DEMOTE and r for -r.)

The value of (r) plus NRMAX should not exceed the number of rows in the worksheet

(normally 201); otherwise the following informative diagnostic is given

* ATTEMPT TO DEMOTE OFF THE WORKSHEET. SPILL IS LOST.

/

"
T

I DEMOTE all values in the worksheet by (r) rows /

/ :

/

Similar to the above instruction, but the entire worksheet is demoted by (r) rows and

only one argument is used. The results are put back into the original columns. The new



value of NRMAX is the old value of NRMAX plus (r)

,

unchanged

.

The numbers in the first (r) rows remain

DUPLICATE (t) times the array starting in (R)
, (C) of size (r)x(c) put in (R)

,
(C)

The two pairs of arguments, after the first argument, designate a rectangular (or

square) array of consecutive • rows and columns. The first pair gives the row-column location

of the number in the upper left-hand corner of the array and the second pair determines the

size of the array. The last pair of arguments specify the location of the element in the

upper left-hand corner of the new array. The new array will be the original array

reproduced (t) times. Each copy of the original array is put immediately below the previous

one. Hence, the new array will have (t)x(r) rows and the same number of columns (c) as the

first array. The new array may overlap the original array. Unless there is an overlap, the

original array remains unchanged. NRMAX can be changed by this instruction. For the

following data in the worksheet

Row/ Column 11

2.0

6.0

12

0.0

4.0

13

8.0
-2.0

the instruction

DUPLICATE 3 times the array starting in 7,11 of size 2x3 and put in 4,32

would give the following result:

//Columrl 32 33 34

4 2.0 0.0 8.0

5 6.0 4.0 -2.0
5" 2.0 0.0 8.0

7 6.0 4.0 -2.0

8 2.0 0.0 8.0
9~ 6.0 4.0 -2.0

The above instruction is equivalent to the 3 = (t) MOVE (see next page) instructions

MOVE the array starting in 7,11 of size 2x3 to 4,32

MOVE the array starting in 7,11 of size 2x3 to 6,32
MOVE the array starting in 7,11 of size 2x3 to 8,32

If (t)x(r) exceeds the number of rows in the worksheet, the following fatal error occurs

*** ILLEGAL SIZE ROW NUMBER

Interchanges the numbers in the rows of each pair of designated columns. The number of

arguments is always even. The exchanges are made on each pair consecutively. Hence, care

is needed if all the arguments are not different. For the numbers

Column 1

Column 2

Column 3

4, 2, 7, 3 and 8

11, 17, 19, 12 and 16

125, 123, 128, 126 and 134

100



the instruction

EXCHANGE column 1 with column 3, and column 3 with column 2

would first excliange columns 1 and 3 and then exchange the new column 3 (the original column

1) with column 2 producing the results:

Column 1

Column 2

Column 3

125, 123, 128, 126 and 134

4, 2, 7, 3 and 8

11, 17, 19, 12 and 16

MOVE the array starting in (R)
,
(C) of size (r)x(c) to the array in (R)

,
(C)

The first four arguments designate a rectangular array of consecutive rows and columns.

The first two arguments give the row-column location of the number in the upper left-hand

corner of the array. The second two arguments give the size of the array. The last two

arguments indicate where the array is to be moved. Arguments are not used to specify the

size of the array in the new locations since the size is always the same as that of the

original array. The new location may overlap the original array. For the following data in

the worksheet

Row/Column 11 12 13

7 2.0 0.0 8.0

F 6.0 4.0 -2.0

the instruction

MOVE the array starting in 7,11 of size 2x3 to 4,32

would give the following result:

Row/Column 32 33 34

4 2.0 0.0 8.0

I 6.0 4.0 -2.0

See, also, the discussion of arrays in section 7 and the description of the synonym AMOVE in

section 7.2.

If an attempt is made to move a rectangular array outside the worksheet, a fatal error

will result.

PROMOTE by (r) rows, col (C) into col (C) , col (C) into col (C) , ... etc.

This instruction is essentially the reverse of DEMOTE, which is described above. The

number of arguments is always odd and greater than 2. For each pair of columns, each value

in the 1st named column is moved up (r) rows into the second named column. The bottom (r)

rows of the 2nd named column remain unchanged. The first (r) rows of the 1st named column

will not appear in the 2nd named column. The number of values actually moved is NRMAX -

(r). If the numbers 1 to 8 are in column 26 and 41 to 48 are in column 27, the instruction

PROMOTE by 3 rows column 26 into column 27

would put the numbers 4, 5, 6, 7, 8, 46, 47 and 48 into column 27.

101



Caution, the instruction promotes each column (even arguments) independently and
consecutively. Hence, for the numbers above and the numbers 31 to 38 in column 28, the

instruction

PROMOTE by 3 rows column 26 into column 27, and column 27 into column 28

would give the same results in column 27 and would put the numbers 7, 8, 46, 47, 48, 36, 37

and 38 into' column 28

.

(If the argument (r) is negative, the PROMOTE instruction is synonymous with the same

instruction using DEMOTE for PROMOTE and r for -r.)

If the argument (r) exceeds NRMAX, the following informative diagnostic is given

* ATTEMPT TO PROMOTE FROM BELOW NRMAX. FIRST ARGUMENT IS RESET TO NRMAX

/ T
I PROMOTE all values in the worksheet by (r) rows /

/ ____/
Similar to the above instruction, but the entire worksheet is promoted and when each

column is promoted the result is put back into the same column. The instruction has exactly

one argument. Zeros are put in the bottom NRMAX- (r) rows of the worksheet.

3.5 Manipulative Operations .

CENSOR, CLOSE UP, FLIP, INSERT, SEPARATE, SHORTEN

The instructions described here enhance problem solving considerably. The CENSOR

instruction is related to the instructions described in section 3.5

CENSOR col (C) for values less than or equal to (E) , replace by (E)
,
put in (C)

Each number, X, in the 1st named column is compared with the value (s) , Y= (E)

,

designated by the 2nd argument. If X is less than or equal to Y, X is replaced by the

number designated by the 3rd argument and put in the corresponding row of the column

designated by the 4th (last) argument. If X is greater than Y, then X is simply moved to

the column designated by the last argument. The original numbers in the 1st column remain

unchanged. To censor values larger than a particular value, change the sign of the values,

censor for the negative of the desired value, and change the sign back. This instruction

has many uses in treating subsets of data or in defining properties of numbers. See section

B4.6 for some examples and see also MATCH in section 3.5. For the numbers

Column 11: 2.3, 7.6, 5.2, 8.3 and 4.2

Column 12: 3.4, 5.8, 5.2, 4.7 and 6.3

the instruction

CENSOR col 11 for values less than or equal to col 12, replace by -1.2, put in col 13

would leave columns 11 and 12 unchanged and would put the numbers -1.2, 7.6, -1.2, 8.3 and -

1.2 into column 13. Whereas, the instructions

CHANGE sign of columns 11 and 12

CENSOR col 11 for col 12, replace 1.2, put in column 13

CHANGE sign of columns 11, 12 and 13

102



would leave columns 11 and 12 unchanged and would put the numbers 2.3, -1.2, -1.2, -1.2 and
4.2 into column 13.

CLOSE UP rows with (K) in columns (C)
,

(C) ... (C)

Each row containing the number (K) is moved to the bottom of the column and the number
in the row is changed to zero. The numbers, which were below (K), are all moved up one row.

Operations are performed on each column independently. For the numbers

Column 3: 2, 1, 3, 2, 1, 0, 3, 1, 4 and 5

Column 4: 1, 4, 5, 0, 6, 1, 7, 2, 3 and 5

the instruction

CLOSE UP rows having 1.0 in columns 3 and 4

would change the numbers in columns 3 and 4 to

Column 3: 2, 3, 2, 0, 3, 4, 5, 0, and
Column 4: 4, 5, 0, 6, 7, 2, 3, 5, and

FLIP column (C) into col (C) , col (C) into col (C) , ... etc.

In each pair of columns, the second named column is the first named column turned upside
down. If the numbers 2, 0, 1, 9 and 3 are in column 17, the instruction

FLIP column 17 into column 18

would put the numbers 3, 9, 1,.0 and 2 into column 18. The instruction

FLIP 17, 18, 18, 18

would leave the original numbers in columns 17 and 18. The number of arguments in the

instruction is always even.

/
; 7

I FLIP the entire worksheet upside down /

/ /

The instruction without an argument turns the entire worksheet upside down. Row 1 goes

into row NRMAX, row 2 goes into row NRMAX-1, row 3 goes into row NRMAX-2, etc..

INSERT into col (C) from (C) at every (i)th row, start with row (R), put in (C)

The values in the second named column are inserted before rows R, R+i, R+2i, ... etc.

of the first named column and the results are stored as indicated . The first two columns

remain unchanged. The value of NRMAX is increased by

1 + (NRMAX-R+l)/(i-l)

However, NRMAX never exceeds the number of rows in the worksheet (normally 201). The value
of NRMAX must be at least 2 to begin with. The values of both (i) and (R) must be greater

than one. For the numbers (NRMAX=6)

103



Column 57: 1, 2, 4, 6, 8 and 10
Column 58: 3, 5, 7 and 9

the instruction

INSERT in col 57 from col 58 at every 2nd. row, starting with row 3, put in col 60

would put the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and into column 60. Here, NRMAX would
be increased by l+(6-3+l)/(2-l) = 1+4/1 = 5. Hence, the new value of NRMAX is 11=6+5.

SEPARATE from column (C) every (r)th row, start with row (R)
,
put in column (C)

Extracts every (r)th row from the first named column, starting with row (R) , and puts
the result in the column designated by the fourth (last) argument. If the numbers 1 through
10 are in column 1, the instruction

SEPARATE from col 1 every 2nd row starting with row 3 and put in column 4

would put the numbers 3, 5, 7 and 9 into the first four rows of column 4; leaving the
remaining 6 rows intact. Caution, do not misspell the command by using SEPERATE. The
instruction performs virtually the reverse operation of INSERT, above)

.

SHORTEN column (C) for col (C) equal to (K)
,
put . shortened cols in (C) and (C)

The instruction operates somewhat differently depending upon whether the numbers in the
second named column are (1) in increasing order, (2) in decreasing order, or (3) in neither
increasing or decreasing order.

(1) If the numbers in the second named column are in increasing order, the instruction,
starting with row 1, looks for the first row containing the value (K) . If there is no
value in the column equal to (K) , it finds the row containing the smallest number larger
than (K) . NRMAX is reset to agree with the row number selected and the first two columns
are put in the columns designated by the last two arguments. The first two columns remain
unchanged. For the numbers

Column 11: 1.0, 2.0, 3.0, 4.0 and 5.0

Column 12: 2.3, 4.2, 5.2, 7.6 and 8.3

the instruction

SHORTEN col 11 for col 12 equal to 5.3 and put shortened cols in cols 21 and 22

would set NRMAX=4 and give the following results

Column 21: 1.0, 2.0, 3.0 and 4.0
Column 22: 2.3, 4.2, 5.2 and 7.6

If the argument (K) in the above instruction was 5.2 instead of 5.3, NRMAX would equal 3 and
the results would be same as above except 4.0 and 7.6 would not be put into row 4 of columns
21 and 22.

(2) If the numbers in the second named column are in decreasing order, the operation
is similar to that described in (1). However, if the value (K) is not found in the second
named column, the instruction looks for the row containing the largest number less than (K)

.

Hence, if the numbers in columns 11 and 12, above, were in reverse order, the instruction
above would set NRMAX=3 and give the results

104



Column 21: 5,0, 4.0 and 3.0
Column 22: 8.3, 7.6 and 5.2

(3) If the numbers in the second named column are in no particular order, the
instruction looks for the first, pair of consecutive rows containing values which bracket
(K), i.e. the value in one row is less than or equal to (K) and the value in the other row
is greater than or equal to (K) . The value of NRMAX is reset to the higher of the two
consecutive rows selected. For the numbers

Column 11: 1.0, 2.0, 3.0, 4.0 and 5.0
Column 12: 7.6, 2.3, 5.2, 8.3 and 4.2

the instruction

SHORTEN col 11 for col 12 equal to 5.2 and put shortened cols in cols 21 and 22

would set NRMAX=2 and give the results

Column 21: 1.0 and 2.0

Column 22: 7.6 and 2.3

Note, in this case, that the columns are not shortened at 5.2 and NRMAX is set equal to 2,

because the values 7.6 and 2.3 bracket 5.2.

In any of the above three cases, if the value (K) is not found in the second named
column, the following informative diagnostic is given

* VALUE REQUESTED IN SHORTEN, ACOALESCE OR AAVERAGE NOT FOUND.

NRMAX remains unchanged and the first two columns are put in the columns designated by the

last two arguments.

5.4 Sorting Data .

HIERARCHY, ORDER, SORT

The instruction HIERARCHY does not sort directly, but is related to botli sorting and
ranking. The ORDER instruction operates on several columns simultaneously. On the other

hand, the SORT instruction only sorts one column, but several columns can be carried along

during the sort.

HIERARCHY of column (C) , put locations of smallest thru largest in column (C)

Finds which row the smallest number is in and puts this row number in the first row of

the 2nd named column; finds which row the second smallest number is in and puts this value

into the second row of the 2nd named column; and so on. HIERARCHY is related to RANKS,

described in section 4.1. If the numt.-rs 7.38, 4.29, 2.15, 8.54 and 6.47 are in column 23,

the instruction

HIERARCHY of column 23 put in column 28

would put the numbers 3, 2, 5, 1 and 4 into column 28.

ORDER independently columns (C) , (C) ... (C) smallest to largest

105



Reorders each column separately, putting the smallest number in the first row, the
second smallest in the second row, and so on until the largest number is put in row NRMAX.
For the numbers

Column 12: 4.2, 7.6, 1.3, 9.8 and 5.7
Column 43: 11.3, 15.4, 19.6, 12.8 and 17.5

the instruction

ORDER columns 12 and 43

would change the numbers in columns 12 and 43 to

Column 12: 1.3, 4.2, 5.7, 7.6 and 9.8
Column 43: 11.3, 12.8, 15.4, 17.5 and 19.6

SORT column (C) min to max, carry along columns (C) , (C) ... (C)

Sorts (orders) the numbers in the first named column in increasing order and carries
along the numbers in the corresponding row of the other designated columns. The results are
put back into the same columns. For the numbers (see HIERARCHY above)

Column 23: 7.38, 4.29, 2.15, 8.54 and 6.47
Column 11: 1.00, 2.00, 3.00, 4.00 and 5.00

the instructions

would yield the results:

HIERARCHY of column 23 put in column 28
SORT column 28 and carry along column 11

Column 28: 1.00, 2.00, 3.00, 4.00 and 5.00
Column 11: 4.00, 2.00, 1.00, 5.00 and 3.00

The numbers in column 11 are actually the ranks of the numbers in column 23. (See section
4.1 for a description of RANKS,)

Care should be used in sorting alphabetical information which has been entered into the
worksheet using a FORMAT, since different computers handle blanks (and other special
characters) in different ways. A (reasonably) safe, but inefficient, method is to use an Al
format specification.

/ ~ ~ '

"~
'

!

' "7
/ SORT column (C) /

/ ___ ,

/

This option is synonymous with the instruction ORDER, with one argument, described
above

.

3.5 Search Operations .

MATCH, SEARCH, SELECT

The three instructions described here perform three different kinds of searching. The
instruction MATCH is particularly useful in treating subsets of data. The instruction
ONEWAY, described in section 4.3, although primarily an instruction for statistical
analysis, can be used to perform certain types of matching operations.

106



Each row of the first named column is compared with the second argument (E) . If two
values are exactly equal, the third argument (E) is put in the corresponding row of the
column designated by the fourth argument. If the numbers are unequal the value in the
column designated by the fourth argument remains unchanged. This is a powerful manipulative
instruction, which is very often useful for analyzing subsets of data.

Suppose the salaries 9,881.00, 5,212.00, 6,548.00, 5,212.00 and 8,098.00 are in column
21 and the corresponding (GS) grades 9, 3, 5, 3 and 7 are in column 22. Suppose we want the
total salary for all persons in grade 3 (and also suppose that column 31 contains all
zeros

.
) Then the instructions

MATCH column 22 with 3.0, extract from col 21, put in col 31

SUM column 31 and put into column 31

would put the numbers 0.00, 5,212.00, 0.00, 5,212.00 and 0.00 in column 31 after the
execution of MATCH and would put the desired result 10,414.00 in the first five rows of
column 31 after the execution of SUM. If similar information was required for all grade
levels the MATCH instruction could be used in the repeat mode or a ONEWAY instruction (see
section 4.2) could be used.

Note, that if a match does not occur in any particular row, the corresponding row of the
column designated by the fourth argument remains unchanged. Zero is not put into the row.

If zero is the desired result, the user should either use an unused column or use an ERASE
instruction. Note also, that two numbers must agree exactly (no tolerance is given) for a

match to occur. Usually, but not necessarily, the second argument is either an integer or a

column of integers. If integers are not involved, caution should be exercised since numbers
may differ slightly due to round-off or conversion.

SEARCH col (C) equal col (C) , move corresp nos in (C) into (C) , (C) to (C) etc.

Searches down the first named column until it finds the first number equal to the number

in row 1 of the second named column. If it finds the number in the kth. row, it transfers

the number in row k of the 3rd named column to the first row of the 4th named column, row k

of the 5th named column to the first row of the 6th named column, and so on. If the number

is not found, a zero is put into the first row of the 4th, 6th, etc. named columns. This

process is repeated using the value in row 2 of the second named column, then repeated again
using the value in row 3 of the second named column, and so on. For the numbers

Column 1

Column 2

Column 3

9, 3, 5, 3 and 7

3, 3, 3, 3 and 3

9881, 5212, 6548, 7864 and 8098

the instruction

SEARCH col 1 equal to col 2, move corresponding nos in col 3 into col 4

would put 5212 into each row of column 4, whereas the instruction

SEARCH col 2 equal to col 1, move corresponding nos in col 3 into col 4

would put the numbers 0, 9881, 0, 9881 and into column 4. The instruction should not be

confused with MATCH, described above. The instruction always has an even number of

107



arguments. The numbers in the columns designated by the odd numbered arguments and the
second column remain unchanged.

SELECT in col (C) nos approx col (C) within absolute tol (K) and put in col (C)

The instruction looks at the absolute value of the difference between numbers in the 1st
named column and the number in row 1 of the 2nd named column. It selects the row, call it

row m, for which this difference is less than or equal to the absolute tolerance (K) . If

there is more than one' difference which satisfies the tolerance, row m will be the one with
the smallest difference. Only one row is selected. Then the value in row m of the 1st
named column is put in row 1 of the column designated by the fourth argument. If the
tolerance is never satisfied, zero is put into row 1 of the designated column. This process
is repeated using the value in row 2 of the second named column, then for the value in row
3, and so on. The numbers in the first two designated columns remain unchanged. For the
numbers

Column 31: 5, 4, 2.4, 2.3 and 1

Column 32: 2,7,5, 1 and 8

the instruction

SELECT in col 31 nos approx col 32 within absolute tolerance 0.5 and put in col 37

would put the numbers 2.3, 0, 5, 1 and into column 37.

/
' —

—

~ ™
7

I SELECT, in (C) nos approx col (C) within absolute tol (K) put in cols (C) to (C) /

/
,

/

Whereas the above form of SELECT only searches for the smallest difference which
satisfies the specified tolerance, this form of the instruction searches for as many values
as are determined by the last two arguments. The values in row (R) are stored according to

the increasing size of the absolute difference between the number in row (R) of the 2nd
named column and the numbers in the 1st named column. For the numbers

Column 31: 5.3, 13.8, 12.6, 12.2, 28.7, 13.4, 4.6, 3.9 and 61.7
Column 32: 12.0, 13.0, 14.0, 3.0, 4.0, 5.0, 26.0, 27.0 and 28.0

the instruction

SELECT in col 31 nos approx col 32 within 1.5 and put in cols 37 to 39

would yield

Column 37: 12.2, 13.4, 13.8, 3.9, 3.9, 5.3, 0.0, 0.0 and 28.7
Column 38: 12.6, 12.6, 13.4, 0.0, 4.6, 4.6, 0.0, 0.0 and 0.0

Column 39: 13.4, 13.8, 12.6, 0.0, 5.3, 3.9, 0.0, 0.0 and 0.0

Note that only 3 columns were designated for storage. Hence, the fourth value in column 31,

12.2, was not selected as approximating 13.0 in row 2 of column 32 within the tolerance 1.5.

/
:

^
'

7
I SELECT in (C) nos approx [C) within abs tol (K) put in (C) to (C) count in (TO /

/ ___ ,
_____/

This form of the SELECT instruction operates exactly like the one immediately above,
but, in addition, the number of values selected from the first named column (count or

frequency) , for each row of the second named column, is put into each row of the column

108



designated by the last (6th) argument. For the numbers in the worksheet and the instruction
in the form above, the instruction

SELECT in col 31 nos approx col 32 within 1.5, put in cols 37 to 39 and freq in col 40

would put the numbers 3, 4, 3, 1, 3, 3, 0, and 1 into column 40.

109



4. STATISTICAL ANALYSIS .

The instructions in this section are described in sufficient detail to enable anyone
familar with the statistical terms to use the instructions effectively. All the
instructions in sections 4.2 through 4.6 can automatically produce a comprehensive set of
statistics. It is beyond the scope of this manual to describe the automatic output of these
instructions in complete detail. Plans are being made to publish separate papers, which
will describe these instructions in more detail and will include a discussion of the uses
and misuses of the various statistics. To supplement the material here and to aid the non-
statistician, a set of references is provided in section 4.8. (An alternative set of
references is given in Hogben (1969).)

Sections 4.2 through 4.6 contain optional forms of the basic instructions, which provide
varying amounts of automatic storage. These forms also have additional forms with the
letter S before the command to suppress the automatic printing. (See section B1.10.) In
each case these options are merely listed and no description is given. The reader, in
doubt, should refer to the previously described instruction without the letter S at the
beginning of the command. If an attempt is made to put an S before the command in an
instruction which does not provide storage of results, the instruction will be ignored and
the following informative diagnostic will be given

* COMMAND IGNORED - S BEFORE COMMAND NAME MEANINGLESS IF NO STORAGE REQUESTED.

The instructions in sections 4.2, 4.3, 4.4 and 4.5 can be used to perform a weighted
(unequal weights) analysis by specifying a column of weights. The use of negative weights
is not allowed and causes the following fatal error

*** NEGATIVE WEIGHTS MAY NOT BE USED

If all the weights are equal to zero, the following informative diagnostic is given

* ALL WEIGHTS ARE ZERO. COMMAND IS NOT EXECUTED

A FREQUENCY instruction is the only one in this section which changes the value of
NRMAX, Several of the instructions, which store results in the worksheet, may put results
in rows below NRMAX, but the value of NRAMX is not changed.

OMNITAB may seem to have relatively limited capability for statistical analysis. There
are only 12 basic instructions in this section. However, the instructions are very powerful
and many have several options. Also, the analysis of real data often requires that the
analyst look at the data in several different ways. The instructions here and in the other
sections provide considerable power and flexibility to do just this.

4.1 Elementary Analysis .

FREQUENCY, HISTOGRAM, NH1ST0GRAM, RANKS

Although the concept of a frequency distribution is very elementary, the computational
problems are not so simple. As a result, there are eight different forms of the FREQUENCY
instruction. The first four forms of the instruction do not store the lower and upper
boundaries for each class, whereas the last four do store the boundaries. In all other
respects the last four options are the same as the first four options.

In order to construct a frequency distribution for a set of numbers, it is necessary to

determine (1) the number of classes which will be used to group the data, (2) the length of

110



each class, and (3) the lower boundary of the first class. Freund and Williams (1958) give
a clear discussion of how this may be done. It is always assumed that all the classes have
the same length.

In the first (and fifth) form the number of classes (k) , the class length (K) , and the
lower boundary of the first class, (K) , are all determined by the instruction. In the
second (and sixth) form, the number of classes, (k) , is specified by the user. In the third
(and seventh) form, both the number of classes, (k) , and the class length, (K) , are
specified by the user. In the fourth (and eighth) form, all three numbers are specified by
the user. The argument (K) which specifies the class length and/or the lower boundary of
the first class is a constant. All other arguments are integers.

Warning : In each form NRMAX is reset to agree with the number of classes, (k) . Also,
the number and type of arguments in the instruction determine which form is to be used, so
the user should be careful. If the class length or lower class boundary of the first class
is specified by the user, he should make sure that all the data are included in the
frequency distribution.

When the number of classes is determined by the program, it is computed to be the
integral part of 1.0 + 3. 3 log,

Q
(NRMAX) , but never less than 5. The class length, unless

otherwise specified, is equal to the absolute value of R/(k-l), where R is the range of the
data (difference between the largest and the smallest) and k is the number of classes. The
lower boundary of the first class, unless otherwise specified, is equal to the smallest
datum minus one half the class length.

The instruction STATISTICAL analysis (in the next section) automatically prints a
frequency distribution using 10 classes. The computational method is different from that
described here. The different forms of FREQUENCY provide more flexibility.

No further descriptions of the forms of FREQUENCY are given below, but results of using
the instruction on a specific set of data are presented. The data in column 1 are the
actual 39 measurements of the velocity of light given by Mandel (1964) (coded by subtracting
299,799.0 from each measurement), namely

0.4, 0.6, 1.0, 1.0, 1.0, 0.5, 0.6, 0.7, 1.0, 0.6, 0.2, 1.9, 0.2,

0.4, 0.0, -0.4, -0.3, 0.0, -0.4, -0.3, 0.1, -0.1, 0.2, -0.5, 0.3, -0.1,

0.2, -0.2, 0.8, 0.5, 0.6, 0.8, 0.7, Q.7, 0.2, 0.5, 0.7, 0.8, 1.1

FREQUENCY distribution of column (C) put in column (C)

The instruction

FREQUENCY of column 1 put in column 13

would reset NRMAX to 6 and put the numbers 5, 11, 10, 12, and 1 into column 13.

f '

7
I FREQUENCY distribution of column (C) , using (k) classes, put in column (C) /

/ /

The instruction

FREQUENCY of column 1 using 10 classes put in column 23

would reset NRMAX to 10 and put the numbers 3, 3, 5, 8, 7, 7, 5, 0, and 1 into column 23.

Ill



I
~~7

/ FREQUENCY dist'n of col (CI, using (k) classes of length (K)
,
put in column (C) /

/
.

/

The instruction

FREQUENCY of column 1 using 13 classes of length 0.2 put in column 33

would reset NRMAX to 13 and put the numbers 3, 2, 5, 6, 3, 7, 7, 0, 5, 0, 0, and 1 into
column 33.

I
"~~

"

" '

1
I FREQUENCY of (C), use (k) classes of length (K) starting at (K) put in col (C) /

/
, _ /

The instruction

FREQUENCY of column 1 using 5 classes of length 0.5 starting at -0.5 put in column 43

would reset NRMAX to 5 and put the numbers 8, 11, 14, 5 and 1 into column 43.

r. — - ' ~ z
/ FREQUENCY of (C)

, put lower boundaries in (C) upper in (C) frequencies in (C) /

/ „ /

The instruction

FREQUENCY of column 1, put boundaries and frequencies in cols 11, 12 and 13

would reset NRMAX to 6 and put the following numbers in the worksheet:

Column 11
Column 12

Column 13

-.74, -.26, 0.22, 0.70, 1.18 and 1.66
-.26, 0.22, 0.70, 1.18, 1.66 and 2.14
5.00, 11.00, 10.00, 12.00, 0.00 and 1.00

The number of classes equals the integral part of l+3.3xlog
1f)

(39) = 1+3. 3 [1.59016) = 6.2475

or 6. The class length is (1.9+.5)/5 = 2.4/5 = 0.48. The lower class boundary of the first
class equals -0.5-0.48/2 = -0.74.

/
'

'

' —

—

- ;

j
I FREQUENCY of (C) use (k) classes, put bounds and freq's in cols (C)

,
(C) and (C) /

/ „
. „ /

The instruction

FREQUENCY of column 1 using 10 cells put in columns 21, 22 and 23

would reset NRMAX to 10 and put the following numbers , correct to 4 decimals , in the
worksheet:

Column 21: -.6333, -.3667, -.1000, .1667, .4333, .7000, .9667, 1.2333, 1.5000 and 1.7667
Column 22: -.3667, -.1000, .1667, .4333, .7000, .9667, 1.2333, 1.5000, 1.7667 and 2.0333
Column 23: 3.0, 3.0, 5.0, 8.0, 7.0, 7.0, 5.0, 0.0, 0.0 and 1.0

The class length is (1.9-(- .5))/ (10-1) =2.4/9=0.26666667. The lower boundary of the
first class is -0.5 - 0.2666667/2 = -0.5 - 0.13333333 = -0.63333333.

112



/— ~ ~
7

I FREQUENCY of (C) using (k) classes of length (K) put in cols (C) , (C) and (C) /

/ .
/

The instruction

FREQUENCY of col 1 using 13 classes of length 0.2 put in cols 31, 32 and 33

would reset NRMAX to 13 and put the following numbers in the worksheet:

-0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 and 1.8

-0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0

2.0, 5.0, 6.0, 3.0, 7.0, 7.0, 0.0, 5.0, 0.0, 0.0, 0.0 and 1.0

The lower boundary of the first class equals -0.5 - 0.2/2 = -0.6.

/
'

7
I FREQUENCY of (C) , classes (k) , length [K) , start at (K)

,
put in (C) , (C) and (C) /

/
.

/

The instruction

FREQUENCY of col 1 use 5 classes of length 0.5 start at -0.5 put in cols 41,42,43

would reset NRMAX to 5 and put the following numbers in the worksheet:

Column 31: -0.6,

Column 32: -0.4,

Column 33: 3.0,

Column 41

Column 42

Column 43

-0.5, 0.0, 0.5, 1.0 and 1.5

0.0, 0.5, 1.0, 1.5 and 2.0

8.0, 11.0, 14.0, 5.0 and 1.0

HISTOGRAM using mid-points in column (C) and frequencies in column (C)

Automatically prints a histogram using one line for each class and representing each

datum by a plus sign. An example is given on page 114, showing the histogram and the LIST

OF INSTRUCTIONS, DATA AND DIAGNOSTICS. The data are the 39 measurements of the velocity of

light used in the examples of FREQUENCY, above, and also in the example of STATISTICAL

analysis in the next section. The instruction automatically prints the title HISTOGRAM FOR

FREQUENCIES ... and the column headings MID-POINTS and FREQUENCY. The instruction is often,

but not necessarily, used in conjunction with the last four forms of FREQUENCY, The mid-

points, the points half-way between the lower and upper class boundaries, were obtained in

this example by using the instruction

ADD col 41 to col 42, mult by 0.5, add Q.O and put in col 44

A maximum of 95 plus signs are printed on any one line. If the frequency in any row exceeds

95, printing continues on the next line(s).

NHISTOGRAM using mid-points in column (C) and frequencies in column CC)

Same as the above instruction; except (1) printing does not start on a new page, C2 ] the

headings MID-POINTS and FREQUENCY are not printed, and [3) the title HISTOGRAM FOR ... is

not printed.

113



IOh

LB

Ou

o ,-H K) "H-l
CO «>-H

£rl>

o-

+ + + +
+ + + +
+ + + +

+ + + + +

OOH^UIH

S u O

P-. < K W

CO o c o
g o o o o —

o c o o oo c o o —
o o ~ o o 3
(X o 3 o o ~

1 LO Lfl LO Ul inQ CNI CN1 ["- (Nl t>-
i—

i

114



RANKS of column (C) put in column (C)

Computes the ranks of a column of numbers. Whenever two or more numbers are tied
(equal), each is assigned the rank equal to the average of the ranks if they were not equal.
E.g., the numbers 3, 3, 7, 7 and 7 would have ranks 1.5, 1.5, 4, 4 and 4. The value of

T = (1/12) Sum (t-l)t(t+l),
all ties

where t is the number tied, is put into the first row below row NRMAX (unless NRMAX equals
the number of rows in the worksheet). Thus, in the above example T = (l/12)x (1x2x3 + 2x3x4)
= (1/I2)x30 =2.5 would appear in row 6. The value of NRMAX remains unchanged. The value
of T may be used to make adjustments for ties in statistics such as the rank correlation
coefficient. It is used by a CORRELATION instruction (see section 4.6). See, also, Kendall
(1948). If the numbers 4.0, 9.0, 7.0 and 1.0 are in column S3, the instruction

RANKS of column 53 put in column 52

would put the numbers 2.0, 4.0, 3.0, 1.0 and 0.0 into the first five rows of column 52.

NRMAX remains equal to 4.

4.2 Analysis Of One Column Of Data .

STATISTICAL, SSTATISTICAL

A STATISTICAL analysis instruction automatically prints (unless suppressed by using
SSTATISTICAL), on one page, 43 statistics for a single column of data and also a frequency
distribution. This page is followed by the printing of the data, the ranks of the data, the
deviations (residuals) about the mean (average), the ordered observations and the

differences between adjacent ordered observations. Pages 117 and 118 give the results of
using a STATISTICAL analysis instruction on 39 actual measurements of the velocity of light
given in Mandel (1964). The actual set of instructions used in this example is

CMNITAB 6/4/69 VELOCITY OF LIGHT MEASUREMENTS
SET VELOCITY IN COL 1 $ -299799.0

.4,. 6, 1,1,1,. 5,. 6,. 7,1,. 6,. 2, 1.9,.

2

.4,0,-.4,-.3,0,-.4,-.3,.l,-.l,.2,-.5,.3,-.l

.2, -.2,. 8,. 5,. 6,. 8,. 1 ,. 1 ,. 2,. 5,. 7,. 8, 1.1

STATISTICAL ANALYSIS OF COLUMN 1

There are 6 different forms of STATIS, plus 4 more (SSTATIS) which suppress the

automatic printing. STATIS is a frequently used shortened form of STATISTICAL analysis.

The six forms differ depending upon whether (1) weights are or are not used, (2) there is or

is not automatic storage of results, and (3) storage of results is in cor.secutive columns or
in specified columns. Each form is differentiated from the others by the number of
arguments (column numbers) in the instruction. The following table summarizes the number of
arguments used in each form of the instruction.

Number of Arguments in STATIS Instruction

No Storage Consecutive Storage Specified Storage

No weights (weights=l) 1 2 5

Weights specified -3* 3 6

* Last column number is preceded by a minus sign

115



1 3

11 17

12 21

13 47
14 34

When results are stored, the statistics appear in the first column, the ranks of the
measurements in the second column, the ordered measurements in the third column and the
residuals (deviations from the mean) in the fourth column. For example,

In the instructions :- STATIS 1, 11 STATIS 3, 17, 21, 47, 34

Measurements are in column
Statistics (page 1)

Ranks (page 2)

Ordered measurements (page 2)

Residuals (page 2)

Page 119 shows the order in which the statistics in the automatic printing are stored in
the worksheet when the 2nd, 3rd, 5th or 6th forms of STATIS are used. The automatic
printing gives some references to Natrella (1963). Page 119 gives additional references.
In each case, a single reference is given, yet often many of the references in section 4.8
discuss the statistic.

Page 120 gives the formulas used to compute each of the statistics. Note, some of the
formulas are defined in terms of some of the other formulas. Special algorithms were
developed to compute the confidence intervals for the mean and standard deviation (Hogben
(1968)).

Remark 1 .

When weights equal to zero are used, the analysis is exactly the same as if the
corresponding measurements were not used. Note, if in one case weights are not specified
(all weights equal 1.0) and in a second case weights equal to 3.0 are used, the value of the
sample variance in the second case will be three times as large as in the first case. Let
the variance of a measurement be

a 2
.
= k.o 2 and let w. = 1/k. and a? = 2.3.ii ii i

In the first case, k. = 1, and the sample variance estimates 2.3. In the second case, k. =

1/3 and the variance estimates' 6.9 (2.3 = 6.9/3).

Remark 2

Sometimes it is desirable to compare the statistics from several sets of measurements.
One way to do this is to use SSTATIS and put the results into adjacent columns. If the
identification of each row is desired, titles can be read and printed using (for example) a
3A4 format specification. The following is an example of a set of instructions for 4 sets
of 100 measurements.

FORMAT A (3A4)

READ A 43 cards into columns 11, 12 and 13

(43 cards with titles in card columns 1 to 12)
GENERATE 1.(1. )43. into column 10
READ data into columns 21, 22, 23 and 24

(100 cards, 4 numbers on each card)
SSTATIS 21, 31

SSTATIS 22, 32

SSTATIS 23, 33
SSTATIS 24, 34

FORMAT B (1X,F3.0,3X,3A4,1P4E15.6)
RESET 43
PRINT B columns 10, 11, 12, 13 and 31, 32, 33, 34

116



HNOHHN
O O O O O O
\o fNI -i oo t-H •>*

d Kl O rH i-H LO
—I rg n LO ^t- LO
CO LT) O O t'. o
vn 1*1 c ; co r- lo
\r> O * M3 Kl
o ^- o LO CM

o oo oo oo oo oo oO Ol

O O O O
I + + +
\0 i-H Cn C71

^H CTl Cn CT>

O N CT) i—

I

lo to cn to

+ + + I

-^ [^ oo t-^OHOIO
CT> LO C7> LO
OO *3" C7i O
LO LO LO OONOON

moo N^t N H en lo rg lo

II II II II II
II II II II II

LO \0

O O

3
CO O"

o o
E-> co co

cc ll, ll, eg eg
O O O CO < <

co co co w co <
e2l_, q qpRqp
SbSsswsS

o o o o o o
I I

CT> Ol
to to
-£> *£>
LO LO
rsj ogo o

OOHHO O LO LOO O CTl CTi

o o o oO O 00 OO
o o to toOONN

g- tJ L/) N ^- -*

I I I LO
tO CN1 CN1 •

ai <3- i-ioo>o II

CO oooo r— o E->

CO CM LO... CO
^f n lo eg

i i o

en
co rg

[-- rg o
r-~ lo oo i—

i

to lo eg CM i—l

eg (nj

yo
CO lo

LO o o

<<

^3
"Iw
Oh CO

S3
CO

CJWftZ
Oh O «
s .a
co a w

• u
CL, CO ><o --. w

O Q O Q
,_q . ,-q OS
CO CO CO Oh

Z Wh

S 3 <
>_

§ Oi _D Pi Uh
< Oi CO M

CL, CO Q
cl, o Uh cq
5 ouuo o u
g^gio^

CO CO2 2
SSco
co co z

II II

CO

e.

&
CO O

+ s CO

S S 92 2 2

OS Qo

uW • CL,

CL, Q Ph

S co 3

117



ooooooo o ooooo o oo o oo o o

o o
00 o o
CTl o o
cti o o
01 O O
Ol o oOlOO
Ol o o

o oo oo oo oo oo oo o

o o
o oo oo oo oo oo oo o

o o ooooo o ooooo o ooooooo

o o
Io 00 oO CTl OO CTl OO CTl OO CTl CDO CTl OO CTl O

O o o oo o o oO O O CDO O CD CDO O CD OO O CD CDO O O O

^ CD CD CD
CTl O CD O
CTl CD CD CD
Ol CD CD O
CTl O CD O
CTl CD CD CD
CTl CD CD O

CD CD O OO CD O CDo o o oo o o oo o o oo o o oO O O CD

I IO O CD CD
CD O CD CDO CD CD O
CD CD O OO O CD CDO O CD CDO O O O

O Oo oo oo oo o
CD CDo o

o o
I Io ^f- oO CTl CDO Ol O

CD Ol O
CD CTl O
CD Ol OO CTl O

t-H O ^H O CTl O i—IOt-HtHOOOOCTit-HOt-HOOCTIOOOt-HOOOt-HOOCMOOOOIOO

OOOOOOOO
I IO o o o o o

i
—-O CD O O O Ohoooooo
1—'O CD O CD O O
X O CD CD O CD CDO O O O O OO O O O O O

O CDO CDO CDO OO OO oo o

o o
O CD CD O
CD CD CD CDO O o oo o o oo o o o
CD CD O OO O O O

T 1 1 1 T 1 1 1 1 1 1 1 1 1 I—I 1—I 1 1 1—1 1 1 1 1 1 1 1 1 1 1OOOOOOCDOOOOOOOOO
I I I I I I I 1 I I t I IOOOOOOOOOOOlCTlOlOCDOOOOOOOOCTlCTlCTlOOOOOOOOOCDCTlOlOlOOOOOOCDOOOCT1CT1CT1OOOOOOOOOOCT1CT1CT1OOOOOOOOOOCTlCTlCTlOOOOOOOOOOCTlCTlCTl

O O O O O
OlOO
CTl O O
CTl O CD
Ol o o
CTl O O
CTl O CD
Ol CD CD

o oo o
CD Oo oo oo oo o

I I' + + + +oooO CD O
CD O CDd O OOOOoooO CD O

o a <z> <z>

CD O O OO O O CDO CD O O
CD O O OO O o oo o o o

o oo o
+ +o oo oo oo oo oo o
t-H Ol

L/l ^f ^t" Kl Kl tM HOOHtMNNNNfO^^-l^LnLQLnLni/lLntsrNNtsOOOOOOHHHHr-fH

t—

<

-J

CJ
c

O^lD01^OC0N^l/100HHK)t0Nl^inH'^\0O\0NNOH00Kl^t-N01tNfflK)'tL^CTiaiN2 N H H r-I CM CM CM CM i—It—I (M H r-I CM CM tO CM t-H to tO H tO rO tO Kl N ^ K) K) r-

1

OOOOOOOOOOOt—IOt-HCMt—It-Ht—ItH( > 1 1 t^J 1—1 T 1 T 1 1 1 1 1 1 1 1 1 1 1 T 1 1 1 1 1 1 1 1 1 1 1 T—1 ^~-J 1 1 1 1 1 1 1 1 1 1 l^J T 1 T 1 1 1OOOOOOOOOOOOOOOOOOOOOOOOOOCDO
r~- r-{ T—

|

rH t-H rt t-H rH T—

)

i—

i

oi
crj vO vn r. \o ^H vO .r: yo .- to

1 tO to K, to to -n K) to to tO vn
CO •^ * •^• <r to ^t- •a- ^i- — LO
LO r-. r-~ r-- r^ M- 1-^ r^ r^ r-~ CM
CM CTl Ol Ol Ol r-~ rn Ol CTl CTl r~.

X — oo oo 00 oo Ol oo 00 00 oo —
— LO LO lo 00 rH CM LO vH cm

^OOlt^OlOOOOCTlOOOOOlOOOlCTlOlOOOl
tOtOCOKlMKlrOtOKlKltOtOKlKltOK)
^j- \0 fO \0 vO \0 ^O UD vD '-O O vO *-0 ^O VO O
t^UllDl/lt^l/ll/lL/lL/lL/lUlL/ll/lLflLJlL/1
oicmlocmcmcmcmcmcmcmcmcmcmcmcmcmcoocmoooo^-oooooooo
^t-T—IOtHtHtHt—I t-H t-H t-H t-H t—It—It—I i-I t-H

O0 t-H

tO \D

LO ^3-

cm [~~

O Ol
r—I O0

"* t-H

t-H vO
VD tO
to >*
a- r--

r- oi
Ol 00

\0 \D
tO tO
^r *
Ol Ol
CO CO

IHOlt
to ud *o
*f LO to
r-- cm -a-
oi o r-.

00 t-H oi

i f

T-

1

T—I T-l

ID \D \D
to to to

t-~ r— r—
CTl Ol Ol
00 OO OO

i cm r—i^j-cor^^rcor-^toi-ocMOi LO CM \£3 tO CO t—lfO(NN(NCONrO\0

L0L0lJ^L0LOOL0L0LOl^OC3OL0l^l/^L/lL0Lnu0OL0OOOL0OOOOL0Ol-nL0OOL0C3O
& 3 oo >* LO LO LO tH <* CO LO •^ ^f rn ^t OO m CM t m CM -r ^H h-- >* ^ r~- r-- -f \T3 CM rH -t CM CO CO M" t-H CO CM CO

CO

C

PC T—

1

CM to to to CM Csl CM f) CM T-H to T-H T-l T-H ^ T-l tH to CM CM to CM CM T— CM CM f] f)

t-H T—

1

n CD n T-l T-H tH cr. tH T-H o ^J ^H t-H H ^H tH tH T-H -H ^H t-H tH t-H ^H —

1

T-l t-H tH t-H i-H tH t-H t-H t-H oo
1

_ o
+
C
+
o
+
o o O

l

o
+
O o o

+
o o O o o o o o

1

c o o
1

o
1

O
1

o o
1

O o
1

o
1

o
1

o
1

O
r

O
1

o
1

o
+O Ol o •

5 O CTl o C J Ol o o o o c —
: 3 o o : : c: o o :• ~ O o o o Ol o o o o '- ~j a o o

,—,o Ol C 3 o O CTl c ) oi I ) t 1 :
-. n o o ' 3 C3 - 3 < 3 C 3 -

1

o C3 C 3 ( ) C 1 Ol ( 3 '1 c 3 C J C 1 c > c J CJ
1—

1 CD CTl o C 2 o O CTl O C 3 CTl o o ( -. o o r- —

.

o —

.

c-. o — o o :

:

CD O o o CD r ~. CD CD o o O o O c:
*-^0 Ol : 1

-" O CTl : 3 n Ol )
~ O o n ~ n •—. ( i r- "1 ~ o n n ( 1 o rn o o C 3 C I' c i o 1 t 3XOCTlOOOOCTl O o Ol -. tr. o —

tr. o <~ o r->
— n r> o o o r-, O o o o Ol C 1 o r- a a o C.3 oO Ol -. l c ; c^ O Ol O o Ol £ 3 o o c: CI Cl o C 3 C3 c : o C3 o — o o O CI o o Ol o C3 CJ o o o o oo Ol O c o O Ol o o Ol O Ol -_ o o o 3 O o s — C c_ o CJ o 3 o o CJ Ol o o o o a o o T-H

^UIHHHLnUIISHlONHN^O^fOO^MHHNl^MHNNWLnLnODNNNLnNOO

118



Row Name Of Statistic Reference

N = LENGTH OF COLUMN, NRMAX
NUMBER OF NON-ZERO WEIGHTS

Section B1.6
Section 4.2

MEASURES OF LOCATION
3 UNWEIGHTED MEAN
4 WEIGHTED MEAN
5 MEDIAN
6 MID-RANGE
7 25 PCT UNWTD TRIMMED MEAN
8 25 PCT WTD TRIMMED MEAN

Dbcon and Massey (1957) , 14

Brownlee (1965), 95-97

DLxon and Massey (1957) , 70

Dbcon and Massey (1957) , 71

Crow and Siddiqui (1967)

MEASURES OF DISPERSION
9 STANDARD DEVIATION

. 10 S.D. OF MEAN
11 RANGE
12 MEAN DEVIATION
13 VARIANCE
14 COEFFICIENT OF VARIATION

CONFIDENCE INTERVALS
15 LOWER CONFIDENCE LIMIT, MEAN
16 UPPER CONFIDENCE LIMIT, MEAN
17 LOWER CONFIDENCE LIMIT, S.D.

18 UPPER CONFIDENCE LIMIT, S.D.

LINEAR TREND STATISTICS
19 SLOPE
20 S.D. OF SLOPE
21 SLOPE/S.D. OF SLOPE = T
22 PROB EXCEEDING ABS VALUE OF OBS T

TESTS FOR NON-RANDOMNESS
23 NO OF RUNS UP AND DOWN
24 EXPECTED NO OF RUNS
25 S.D. OF NO OF RUNS
26 MEAN SQ SUCCESSIVE DIFF
27 MEAN SQ SUCC DIFF/VAR

DEVIATIONS FROM WTD MEAN
28 NO OF + SIGNS
29 NO OF - SIGNS
30 NO OF RUNS
31 EXPECTED NO OF RUNS
32 S.D. OF RUNS
33 DIFF. /S.D. OF RUNS

OTHER STATISTICS
34 MINIMUM
35 MAXIMUM
36 BETA ONE
37 BETA TWO
38 WTD SUM OF VALUES
39 WTD SUM OF SQUARES
40 WTD SUM OF DEVS SQUARED
41 STUDENT'S T
42 WTD SUM ABSOLUTE VALUES
43 WTD AVE ABSOLUTE VALUES

Snedecor and Cochran (1967), 44

Brownlee (1965), 80

Snedecor and Cochran (1967)

,

39

Duncan (1965), 50

Snedecor and Cochran (1967)

,

44

Snedecor and Cochran (1967), 62

Natrella (1963), 2-2,2-3
Natrella (1963), 2-2,2-3
Natrella (1963), 2-7

Natrella (1963), 2-7

Fisher (1950), 136

Brownlee (1965), 344

Brownlee (1965), 223

Bradley (1968), 279

Bradley (1968), 279
Brownlee (1965), 222
Brownlee (1965), 222

Brownlee (1965), 224

Brownlee (1965), 227

Brownlee (1965), 230

Brownlee (1965), 230

Natrella (1963), 19-1

Natrella (1963), 19-3

Snedecor and Cochran (1967), 86

Snedecor and Cochran (1967), 87

Brownlee (1965), 296

51-60 FREQUENCY DISTRIBUTION Freund and Williams (1958), 17

119



r*

d\

+
-H

X

O
13
0)
CD

U
<4H

+J

X +-> 4h
DC H O
•H 00
<D •H t/i

3
2

CD
CD

O iH

rH o DO
(1) u CD
N CD

SI m CM
13

c /—

\

o C a; a: rH
c o

c OM~~ cm^
1

r*x t/1 w •>

—

>

•m X
•H u t—

I

i-H X.
3 H

3 Ai J<
P
•H

0) 3
3 CD
.—

I

D \^ ^^ »
03 rH w •H
> OJ 1 1 i 1 ^v. 3

> r* r« 3 r-H

1-1 CM 'X II

(/) +-> C -H
CD m 3 •H tX]H CD 3 s i X 3 —

^

DO I X 'X rH
rc) S-. •H II •H •H

S CT) H H •H CM -H
><, C -H X X

t/i rH ^X, _>^ X X *?•H •H H •H •H
s -V H rH 3 3 3 s—

'

3 3
II II rH .-i H rH rH

T-\ ^! .ii -H -* -H II II II II II II

C 1 c—

a

C -H C -H (3 -i-l C -H C tH
X X 1 ' 1—

'

[XI tx] £—

J

M C—

J

IX]

s-^ 6 E o
e 6 o o 13

CN1 o O
13

*t3
CD

13
CD

CD
CD

s~l CD CD CD CD U
rH CD CD S-H fl 4H

13 + !-. U MH Mh
CD ^i MH 4H HH
•H MH Mh O
4-1 <4H <4H O O
•H X o o A" tn

o Ifi en CD
CD + tn tn CD CD CNl CD& CD CD CD CD !-i

!/)

<N
CD
S-.

CD

DO DC
A, DO

CD
4-> DO DO CD CD 13
Q ^ •H <D CD T) T3 „\"
d

X
3 r-H

1

13 13
i—

1

CM"
1

CNJ

CD <r
;^_

/—

\

t-H ^H m 1

S- Jf r""\ i—

1

r-

1

r^
cs

u >*
-a- ^

CM
i

d
^ ^, ^ 1

en H o ^ + ^-^ ^? /—

s

C] M
+-> 3 ~d i 'rH 3 X, Si rH 4H

rH
1 II i X DO DO +-> +-> •H +

DC II 13 CN) ^! -H fi c •H H 3 3 A
•H C -H 13 1 1X1 •H H 3 i X r^ +->

CD IX! O £ d t/5 en

3 •H iH •H D 3 •H r^ 13H M X •H X m m X o C
MH d X ^ •H •H 3 X 3 i

—

Ol CM CS] n!
•H •H X 3 rH iX H 1 ^ 1 X en o H

•H 3 X II 3 m tn ^H 3
X ^H CM <r <r ^ -H m m X X II ' X

d M II + 1X1 II CM <N J>! -H o> M
II II C -H •j- a <r .*! X H fi -H 3 O O C—

J

H
a; d -h [xj rH cn X I>-4 i X 1—

1

r-H CN] X I^ v—

'

IXI + rH
JiL

+ -* + X +J M 1 | rH V
II ^ i

1 rH n rH II en ^4 ^ I—

]

II •r->

II II X i n 1 II II II O 1 + II cn]

3 ' ' C -H ^J -H 1 X C -H CM o ~v ^ rH o rH
d ^4 'X ' X X rX* t-~0 tXJ l/) (/} Pi I 1 in .-H i X IX U) t/) m 1 ' 4-> a.

120



STATISTICAL analysis of column (C)

The STATIS instruction with 1 argument prints the comprehensive set of statistics
without using unequal weights and does not store any results in the worksheet.

/ J
I STATISTICAL analysis of column (C)

, put statistics in (C) and next three cols /

/ /

The STATIS instruction with two arguments performs an unweighted (equal weights)
analysis and puts results in the column designated by the second argument and the three
successive columns which follow.

/ J
I STATISTICAL analysis of (C) , weights (C)

, put in (C) and next three cols /

/ /

The STATIS instruction ivith three arguments uses weights and stores results in four
columns. Results are stored in the column designated by the last argument and in the three
successive columns which follow.

/ J
I STATISTICAL anal of (C) wts in (C) don't put in (-C) /

/ /

This form of the STATIS instruction uses -weights and does not provide any storage of
results. The last argument must be preceded by a minus sign to indicate that storage of
results is not requested. This is the only instruction in CMNITAB which uses a negative
column number. This technique was necessary to differentiate this form from the one above.

/
:

J
I STATISTICAL analysis of col (C), put statistics in cols (C) , (C) , (C) and (C) /

/ /

The STATIS instruction with 5 arguments does not use (unequal) weights and stores
statistics in the four columns designated by the last four arguments.

/ J
I STATISTICAL anal of (C) wts in (C)

, put statis in cols (C) , (C) , (C) and (C) /

/ /

The STATIS instruction with 6 arguments uses weights and puts statistics in the four
columns designated by the last four arguments.

SSTATISTICAL analysis of column (C)
,
put statistics in (C) and next three cols

/ T
I SSTATISTICAL analysis of (C) , weights (C)

,
put in (C) and next three cols /

/ /

121



/ -J
I SSTATISTICAL analysis of col (C)

,
put statistics in cols (C) , (C) , (C) and (C) /

/ /

/ —J
I SSTATISTICAL anal of (C) wts in (C) , put statis in cols (C)

,
(C)

, (C) and (C) /

/ /

4.5 Analysis Of Groups Of Data .

ONEWAY, SONEWAY

The instruction ONEWAY automatically prints a comprehensive set of results for analyzing
a one-way classification. Although primarily an instruction for statistical analysis,
ONEWAY has other uses in data manipulation. It can be used simply to determine the number
of values in each of several groups.

Use of Instruction .

There are three forms of the instruction with 2, 3 and 6 arguments, which are all column
numbers. The first argument is the number of the column containing the data or
measurements. The second argument is the number of the column containing the corresponding
group number (identification or tag) . Suppose six measurements have been made using three
different types of equipment; two using the first, one using the second and three using the
third type of equipment. Then, the group numbers, or tags, would be 1, 1, 2, 3, 3 and 3.
These numbers should be used if the equipment (groups) have been labeled A, B and C.

The group numbers should be integers.* Every integer from 1 to the largest should be
represented; i.e., there should be at least one measurement in each group.* No diagnostic
is given if these conditions are not met. If any tag is less than 1.0, it is set equal to
0.0 and the corresponding measurement is ignored. (The measurement is given the weight
zero.) The group numbers do not have to be in increasing order. They can be in any order
as long as it matches the order in which the measurements are entered into the worksheet.

* These restrictions will be lifted in the near future.

Restrictions .

(1) The value of NRMAX must not exceed 2700.

(2) The number of groups must not exceed 540.

(3) The number of groups must be at least 2.

(4) The number of groups must not exceed the number of measurements with positive tag.

Violations of these restrictions result in the following fatal error:

*** COLUMN NUMBER TOO BIG OR LESS THAN 1

(Restrictions (1) and (2) apply to NBS worksheet of size 12,500.)

Automatic Printing .

Each of the five sections of the automatic printing is described below under the
headings which appear on the printed page as shown in the example on page 126.

ANALYSIS OF VARIANCE

The traditional analysis of variance for a one-way classification is printed, which
shows the source of variation, degrees of freedom (D.F.), the sums of squares, the mean
squares, the F-ratio for testing for differences between group means, and the significance

122



level (F PROB.) of the F-ratio. The usual assumptions of normality, independence and
constant variance of measurement errors are made. See, for example, section 10.2 of
Brownlee (1965) for a discussion of the statistical treatment of a one-way classification.

If the significance level (F PROB.) for

F = Between Groups Mean Square/Within Groups Mean Square

is less than 0.10 and the number of groups exceeds 2, additional results are printed, which
do not appear in the traditional analysis of variance. The Between Groups (means) sum of
squares is separated into two components; the slope with 1 degree of freedom and the balance
representing deviations about the straight line regression of group averages on group
number. This information may or may not be useful. Often, time has an important effect,
which may be revealed in these results. See section 11.12 of Brownlee (1965) for a
discussion of some of the statistical aspects of this procedure.

Following the above analysis of variance, results are printed for the Kruskal-Wallis
non-parametric H-test for testing for differences between group means (averages) . The value
of H is printed along with its significance level (F PROB.). The H-test uses the ranks of
the measurements and avoids any assumption about the distribution of measurement errors.
Details of the test may be found in section 7.7 of Brownlee (1965) and in the original paper
by Kruskal and Wall is referenced therein.

ESTIMATES

The
_
following items are printed for each group: the (1) group number, (2) number of

measurements, (3) average (mean), (4) within standard deviation, (5) standard deviation of
the mean, (6) minimum or smallest measurement, (7) maximum or largest measurement, (8) S(R)
equal to the sum of the ranks of the measurements, and (9) a 95% confidence interval for the
mean. Six significant digits are used to print items (3), (4), (5), (6), (7) and (9) in
floating-point (scientific) notation. The values printed in items (1), (2) and (8) are
exact. The results are printed with the group numbers (tags) in consecutive, increasing
order; regardless of the order in which the numbers were entered into the worksheet.

In the printing of the averages (means) and standard deviations, the letters H and L are
put immediately after the high (largest) and low (smallest) values. If two values are tied
for the largest (smallest), the letter H (L) is put immediately after both values. If the
number of measurements in a group equals 1, ESTIMATE NOT AVAILABLE is printed under WITHIN
S.D. and S.D. OF MEAN. Also, ********** TO ********** appears under 95PCT CONF INT FOR
MEAN.

The number of measurements, mean, minimum and maximum are also printed for the total
number of measurements. In addition, the within standard deviation, standard deviation of
the mean and 95% confidence interval for the mean are printed for three different models:
the fixed effects model (Model I), the random effects model (Model II), and the model which
assumes that all the groups are the same so that in effect all measurements were taken from
a single group.

The confidence limits are formed by taking the grand mean and first subtracting and then
adding the product of the percentage point of Student's t-distribution and the standard
deviation of the mean. Let k = number of groups and n = total number of measurements (with
positive tag). Then, the standard deviation of the mean is the square root of the variance
of the mean formed as follows:

Model Variance Variance of Mean Degrees of Freedom

I v = Within groups mean square v/n n-k

II v = ^=1
(x.-x)7(k-l) v/k k-1

Ungrouped v = Total mean square v/n n-1

123



PAIRWISE MULTIPLE COMPARISION OF MEANS.

This, section only appears if the significance level (value under F PROB.) of the Between
Groups F-ratio is less than 0.10. The Newman- Keuls-Hartley procedure is not performed if

the number of measurements, with positive tag, is less than 4 plus the number of groups.

The purpose here is to divide the averages into groups in such a way that all averages
within a group are not significantly different at the .05 significance level, whereas
averages in different groups are significantly different. Two different procedures are

used; the Newman-Keuls-Hartley method and the Scheffe method. The two methods are similar,
but not identical and frequently give slightly different results. The Newman-Keuls-Hartley
method is described in section 10.6 of Snedecor (1956) and section 10.8 of Snedecor and

Cochran (1967). The Scheffe method is discussed in section 10.3 of Brownlee (1965). Groups
are separated by a string of 5 asterisks. If adjacent groups have no average in common, the
two groups are separated by two strings of 5 asterisks.

Both methods require percentage points of the studentized range. Here, a good
approximation developed by John Mandel is used. The Newman-Keuls-Hartley method is designed
for use when the number of measurements in each group is the same. An approximation is used
in comparing two means by setting

1/n = ^(l/n.+l/nj)

TEST FOR HOMOGENEITY OF VARIANCES.

The usual analysis of variance for a one-way classification assumes that the variance of

each group is the same. This section provides information for assessing the validity of

this assumption. Small values of the significance level P indicate lack of homogeneity of
variance. Cochran's C is discussed on page 180 of Dixon and Massey (1957) and in more
detail in Chapter 15 of Eisenhart et al. (1947). The Bartlett-Box F-test is a modification
of Bartlett's test which uses the F-distribution rather than the chi-squared distribution
and is less sensitive to non-normality. It is discussed on pages 179 and 180 of Dixon and
Massey (1957). A table of critical values of maximum variance/minimum variance for equal
sample sizes is given on pages 100 and 101 of Owen (1962).

If either P value is less than or equal to 0.10, the following is also printed

APPROX BETWEEN MEAN F-TEST IN PRESENCE OF HETEROGENEOUS VARIANCE

followed by the F-value and significance level P. This approximate F-test for testing for
differences between means is described on pages 287-289 of Snedecor (1956). Note, this

information does not appear in the example on page 126, because both P values (significance
levels) exceed 0.10.

MODEL II - COMPONENTS OF VARIANCE.

This is the usual analysis of variance estimate for the between component in a random
effects model (Model II), See, for example, sections 10.6 and 10.7 of Brownlee (1965).

Provides the comprehensive automatic printing described above, but does not give any
automatic storage of results. The following set of instructions, to analyze the data on

page 315 of Brownlee (1965), give the automatic printing shown on page 126.

124



CMNITAB 2/22/71 EXAMPLE OF ONEWAY - BROJVNLEE DATA PAGE 31S
SET data in column 1

83 81 76 78 79 72

61 61 67 67 64

78 71 75 72 74

SET group number in column 2111111
2 2 2 2 2

3 3 3 3 3

ONEWAY with data in col 1 and group no. in col 2

/
~~

' ~ ~~~ ~~~~ ' V
/ ONEWAY for (C) group no in (C) put statistics in (C) and next three columns /

/ _____ /

This form of ONEWAY, with an additional argument, provides automatic storage in addition

to the automatic printing. If the last column number is X, then results are stored in the

four consecutive columns X, X+l, X+2 and X+3 as follows:

Column Contents

X group number
X+l number of measurements in each group
X+2 group averages (means)

X+3 group standard deviations

These are the results in the first four columns in the ESTIMATES section of the automatic

printing. The instructions, applied to the above example,

ONEWAY 1,2 and store in col 11 and next three cols

PRINT columns 11, 12, 13 and 14

would yield

COLUMN 11 COLUMN 12 COLUMN 13 COLUMN 14

1.0000000 6.0000000 78.166666 3.8686776

2.0000000 5.0000000 64.000000 3.0000000

3.0000000 5.0000000 74.000000 2.7386128

I
^ ' ~

' 7
I ONEWAY for (C) with (C)

,
put group in (C) , number in (C) , means (C) , s.d. (C) /

/
,

/

Same as above; except the last three columns for storage are specified by the user
instead of implied by the instruction. The last four column numbers do not have to be

either consecutive or equal.

Storage of results is done sequentially in the same order as in the form above. Hence,

if any column number is used more than once, results stored first will be erased. The

instruction

ONEWAY 1,2 and 11, 11, 12, 12

would put the numbers in each group in column 11 and the standard deviations in column 12.

The group identification and means would not be stored.

125



r^ o
LO O

co eno o
CNJ -^- CN]

o o
+ +

CN] r-H CM rH
oo> Wo
+ co en +
tH CD LO tON l/) O tO
to -^r o to
LO i to
CN] \0 LO CO

o o
+ +NHMMNO cn LO O O

+ CO CT) + +
i—

I O lO to LO"^LoonN
CD ^t O tO tO
i—

I • • 00 CT)
LO \0 LO O LO
\D ^t O
lo i-H r^

u O *
ffl + *H o #o *W o K
U-i
—

fc ** *
i ^

*
K

126



SOMEWAY for (C) group no in (C) put statistics in (C) and next three columns

/ T
I SONEWAY for (C) with (C)

,
put group in (C) , number in (C) , means (C), s.d. (C) /

/ /

4.4 Analysis Of Two-way Table .

TWOWAY, STWOWAY

The TWOWAY instruction produces an automatic printing of an analysis of variance for a
two-way crossed classification without replication; fixed effects, infinite model. One form
of the instruction is for use in the balanced case (4 arguments) and one form for use in the
unbalanced case (5 arguments) . Before proceeding with a description of the two forms of the
instruction, a very brief statistical background is given, which in turn will be related to
an example.

Remarks which hold for both forms of the instruction follow the statistical background.
Remarks which pertain to one form only are given in the description of the instruction.

Statistical Background .

Suppose we have a two-way table with three rows and four columns, as illustrated, for
measurements y . .

:

Row 1

Row 2

Row 3

A common statistical (additive) model in this situation is:

y. .
= y + p. + Y- + £• .,

where i = 1, 2, ... ,r=3; j = 1, 2, ... ,c=4; the e's are assumed to behave like
independent, random, normal variables with mean zero and variance a 2

. Also, the constraints

£i=l p
i

=
^=lYj

= °

are imposed, so that

Column 1 Column 2 Column 3 Column 4

yil yi2 yi3 yi4

y2 i y22 y23 y24

y3i y32 y33 y34

P
3

= -
P-l

" P
2

and y4
=

The parameter u represents the overall mean, p. represents the effect of the ith row,

the parameter y. represents the effect of the jth column.

and

127



In the least squares framework this model can be rewritten in the equivalent form

yk = e
i
X
lk

+ S
2
X
2k

+ 2
3
X
3k

+ 6
4
X
4k

+ B
5
X
5k

+ S
6
X
6k

+ \
where k = 1, 2, ... , rc=12, and

= V, T '2' 'V
3

5 " Y
2
** h

X
2k

= 1, X
3k

= o,

o, 1,

-1, -1,

are parameters to be estimated and the x's are fixed known constants. The constant x is

identically equal to one,

if y is in the first row;

if y is in the second row;

if y. is in the third row;
' k

the constants x,. , x r , and x., are defined in a similar manner. The constants x„, and x_.
4k* 5k 6k 2k 3k

equal -1 for each measurement in the third row, because of the constraint imposed upon the
row effects

.

The above model can be conveniently expressed in matrix notation as y = Xg + e. See
pages 257' and 258 of Draper and Smith (1968). For clarity, the matrices are written out in
full below.

MATRIX NOTATION

~>n~

yl2

y±3
=

yu
y2i

y22

y23

y24

y3i

y32

733

/34_

V P
l

P
2

Y
l

Y
2

Y
3

1 1 1

1 1 1

1 1 1

1 1 -1 -1 -1

1 1 1

1 1 1

1 1 1

1 1 -1 -1 -1

1 -1 -1 1

1 -1 -1 1

1 -1 -1 1

1 -1 -1 -1 -1 -1

p2

~
e
ll~

e
12

6
13

e
14

e
21

e
22

e
23

e
24

e
31

e
32

6
33

_
e
34_

These matrices can be clearly generalized for arbitrary values of r and c. Note, the design
matrix, X, is constructed with the constraints on row and column effects imposed.

Use of Instruction .

"Let the first four arguments of the instruction be denoted by r, c, Y and X, all

128



integers. The first two arguments, r and c, specify the number of rows and columns in the
two-way table. The third argument, Y, is the column containing the measurements. Data are
entered into column Y one row at a time so that all the measurements in row 1 are entered
first, then all the measurements in row 2, and so on; as indicated by the vector y in the
MATRIX NOTATION table above. The fourth argument, X, designates the first column ivhere
automatic storage begins; see below.

Restrictions .

The following restrictions apply to both forms of the instruction. Additional
restrictions on the use of weights are given in the description of the second form of
TWOWAY.

(1) The product re must equal NRMAX.

(2) Both r and c must exceed 1.

(3) The column number Y must be less than the column number X,

(4) (X+r+c+2) must not exceed the number of columns in the worksheet.
(5) 2(r+c+4) must not exceed the number of rows in the worksheet.
(6) For s = smaller of r and c, t = larger of r and c, the following table shows the

largest permissible value of t for each possible value of s:

2 51
"7 31* 12 22*

3 45 8 29* 13 20*

4 40 9 27* 14 19*

5 37 10 25* 15 18*

6 34* 11 23* 16 17*

The asterisk indicates that the worksheet has to be redimensioned for the largest tables.

If any of the above restrictions are violated, the following fatal errors will occur:

(1) *** ILLEGAL SIZE ROW NUMBER
(2) *** ILLEGAL ARGUMENT ON CARD

(3) *** ILLEGAL ARGUMENT ON CARD

(4) *** DEFINED MATRIX OVERFLOWS WORKSHEET

(5)
*** DEFINED MATRIX OVERFLOWS WORKSHEET

(6)
*** INSUFFICIENT SCRATCH AREA

Automatic Printing .

Different analyses of variance are printed for each form of the instruction. See the
descriptions and examples below. The F-ratio is always the MEAN SQUARE on the same line

divided by the RESIDUAL MEAN SQUARE with the corresponding degrees of freedom. The F PROB.

values are the significance levels of the F-ratios. They give the probability that the

observed F-ratio will be exceeded, if in fact there are no differences between row or column
effects, as the case may be, i.e., if all row (or column) effects equal zero.

Each form prints a table containing the effects, the estimates of the effects and the

standard deviations of the estimates. The standard deviations of the estimates are

functions of the residual standard deviation. If the additive model is correct and if the

assumptions concerning the measurement errors are correct, then the residual standard
deviation is an estimate of a. Note, the row (column) estimates are estimates of effects,

not means. The estimate of a row (column) mean would be the sum of the estimate of the mean
and the estimate of the row (column) effect.

The second page of the printing contains a table of standardized residuals; standardized

by dividing each residual by its own standard deviation. See section 4.5 for further

information on standardized residuals. Each residual is printed with two digits after the

129



decimal point. If the number of columns, c, exceeds 15, the printing of a row of residuals

continues on the next line. A string of six asterisks indicates the residual is equal to or

greater than 1000.00. (F6.2 format used.) When this happens, it is a sign of some

difficulty; either there is an error in the set of instructions or there is some problem
with the data. All printing is done using either "readable" or fixed formats.

Automatic Storage .

The instruction automatically stores results in (r+c+3) consecutive

with column X and continuing through column (X+r+c+2), as follows:
columns, starting

(1) The (re) x (r+c-1) design matrix in columns X through (X+r+c-2), inclusive.

(2) Coefficients in 2(r+c+4) rows of column (X+r+c-1).

(3) Residuals in re rows of column (X+r+c)

.

(4) Standard deviations of predicted values in re rows of column (X+r+c+1).

(5) Fourier coefficients in 2(r+c) rows of column (X+r+c+2).

The design matrix is very useful for using a FIT instruction in further work; see

examples below. The values in the last four columns are essentially the same as those which

would be obtained using the appropriate FIT instruction. The coefficient column (X+r+c-1)

contains 4 additional values; the estimates and standard deviations for the rth row and cth
column. As a consequence of the constraints on the row and column effects, the estimates of

the rth row effect and the cth column effect are the negative of the sum of the first (r-1)

row estimates and the first (c-1) column estimates, respectively. Note, 2(r+c+4) or 2(r+c)

may exceed NRMAX. Consequently, NRMAX may have to be reset in order to print the entire

contents of the Coefficients and Fourier Coefficients columns.

The column of coefficients contains:

Rows

1

2 to (r+1)

(r+2) to(r+c+l)
(r+c+2)

(r+c+3) to (2r+c+2)

(2r+c+3) to 2(r+c+l)
2(r+c)+3 to 2(r+c+4)

Description No. of Rows

estimate (coefficient) of mean (effect) 1

estimates of the r row effects r

estimates of the c column effects c

standard deviation of the mean 1

standard deviations of the r row estimates r

standard deviations of the c column estimates c

the six values: 6

number of non-zero weights
number of vectors in design matrix - (r+c-1)

residual degrees of freedom
residual standard deviation
residual variance
multiple correlation coefficient squared.

In the Fourier coefficients column (X+r+c+2), using SS for sum of squares, the following

quantities are stored:

(i) Row 1 gives the SS due to the mean.

(ii) The sum of rows 2 to r gives the Between Rows SS.

(iii) The sum of rows (r+1) to (r+c-1) gives the Between Cols SS.

(iv) Row (r+c) contains the Residual SS.

(v) Row (r+c+1) contains the Total (uncorrected) SS.

(vi) Row (r+c+2) contains the first Fourier coefficient.
(vii) Rows (r+c+3) to (2r+c+l) contain the (r-1) row Fourier coefficients.

(viii) Rows (2r+c+2) to 2 (r+c) contain the (c-1) column Fourier coefficients.

Note, the Total (uncorrected) SS is the (weighted) sum of the squared measurements. The

TOTAL SUM OF SQUARES in the automatic printing is the corrected Total SS, i.e., the

uncorrected Total sum of squares minus the sum of squares due to fitting the mean.

130



Computing Method .

A least squares approach is taken and the computing algoritlim is essentially the same as
that used in the FIT instruction (section 4.5). In this way, balanced tables and unbalanced
tables are treated similarly, to the advantage of the user. In a restricted sense, TWOWAY
is special case of FIT. A balanced two-way table (first form of TWOWAY) is a special case
of an unbalanced table using all weights equal to one. The results are believed to be very
accurate. In the event the sums of squares in the analysis of variance do not sum
accurately, the following informative diagnostic is given:

* SUM OF SQRS DO NOT ADD UP-ABS. VALUE OF (TOTAL-ROW-COL-RES) /TOTAL EXCEEDS 5.E-7

TWOWAY analysis for (r) by (c) table, data in col (C) put in (C) and succ. cols.

Automatic Printing .

This form of TWOWAY also prints an analysis of variance to perform Tukey's test for non-
additivity. The instruction TWOWAY assumes the measurements can be represented by an
additive model. It is a well known, yet often overlooked, fact that additivity of effects
depends on the scale of measurement used. Since the scale of measurement is often, at least
in a certain sense, arbitrary, non-additivity is often present. Tukey's test enables the
user to assess the adequacy of an additive model. Small values of the significance level, F
PROB., indicate the presence of non-additivity. If the model is multiplicative, it may be
appropriate to reanalyze the data using some form of transformation. Tukey's test is
described in Graybill (1961), starting on page 324.

Example .

Pages 132 and 133 show the automatic printing and set of instructions to analyze the 3x4
table on page 331 of Graybill (1961). Notice that the data after the SET instruction look
like a two-way table, but are entered into the worksheet as a single column.

After the TWOWAY instruction on page 133, the instruction

FIT 1, 1.0, 6, 11 *** 16

would provide additional information. In particular, it would give (i) the four per page
plot of standardized residuals to supplement the table given by TWOWAY, (ii) print the
predicted values, and (iii) print the variance-covariance matrix, which could be used to
calculate the variance of linear combinations of the row or column estimates.

Automatic Storage in Example .

The fourth argument of the TWOWAY instruction on page 133 is X=ll. Hence, the design
matrix is stored in the 6=r+c-l columns 11 (X) through 16 (X+r+c-2), the coefficients are in
column 17, the residuals in column 18, the standard deviations of predicted values are in
column 19, and the Fourier coefficients are in column 20. A print of columns 11 to 16 would
reveal the same design matrix shown as the matrix X in the MATRIX NOTATION table on page
128. Note, column 11 has values in 22 (2(r+c)+8) rows and column 20 has values in 14

(2(r+c)) rows, whereas NRMAX=12.

The numbers under ESTIMATE on page 132 are stored in row 1, rows 2 to 4, and rows 5 to 8

of column 17. The numbers under STD. DEV. are stored in rows 9, 10 to 12, 13 to 16, and 20
of column 17. Rows 17, 18, 19, 21 and 22 contain the numbers 12., 6., 6., 3.8055554 and
.58421852, which are the number of non-zero weights, the number of vectors in the design
matrix, residual variance and squared multiple correlation coefficient.

131



_

I

O CN1 CN)

E-h en ^H

cq

<

§

I

g

(73 mnn-
to lo lo
Kl LO LO
tO LO LO

3 tO LO LO
c/ oo o o
CO LO to CO

tO oo to

©

vD O N OO
\C \0 f^ ^D
kO ^O tO vO
\0 \D ^ MD

\o lo ^f
en oo lo
CO ^O LO
en cm lo
^O LO LO
O OO o
OlOl oo

£
t~- CM tO

>
H
Q
§
2O2
a:o
U-, \o

Cn tO CM
H oo ** to
CO m KltO
W ^ o to
H O CM tO

en ai oo

E3

tO ^" ^f
CTl CTl CTl
to to too o o
«=d- ^- ^~
\0 \D MD
CTl CTl CTl

c--» r-- c--

to to ^j- ^j-

O ^O O vO
t—) t—

1

r~\ t—I

CTl CTl CTl cti

to to to to
LO LO LO LO
r~- r-» i-- c--.

CTl CTl CTl CTl

CNJ tO MD i—

i

yD t~- .H
r-~ nvoio en 'O to o

w vO CO vO \£> en *o to o
H vO IICiO en vo to cd

VO tO vjD \0 en ^o to o
kO tn vO\D en o to o
^H OO HlO "3- tH OO LO

H
COw

«tf o ^f ^o n -^ o n
CM iH 1 1 CM H H

HtnvD

CO CO
3 -J
Q O

z 2 <iHMD
PPrnt-WW woBffl2h

fc

E-i CO

Q W <
§ U 32 a
Z 5^
s gg ou

g: 3 3 —1
-J "-J J

o o o o o o o
c; a pc u u u u

132



3S
8

- 3

p
>
Q

3
a,

u Ov]

2 o
cm

H
E-i U
in

S Q
o «
H 2
CO o

E-
|H LD2J
O p~|

u co
<2 3=

>—

'

PJ CO*J

CO

I

CO
r-H M O >"

<CMOH<
E-1

E- Q
co H

133



The numbers under SUM OF SQUARES on page 132 are obtained from the values in column 20.

The Between Rows SS (7.1666665) is the sum of the values in rows 2 and 3. The Between Cols
SS (24.916666) is the sum of the values in rows 4, 5 and 6. The Residual SS is in row 7

(r+c). The corrected Total SS (54.916668) equals the uncorrected Total SS (125.00000) in
row 8 (r+c+1) minus the SS due to the mean (70.083333) in row 1.

Remark .

The following three instructions, after TWOWAY, would print a table of predicted values
similar to the table of standardized residuals.

SUBTRACT col 18 from col 1 and put in col 2

MMATVEC column 2 into 1,31 size 3x4
MPRINT array in 1,31 of size 3x4

/ J
I TWOWAY anal, for (r) by (c) table, data in (C) store from (C) on, wts in col (C) /

/ /

This form of TWOWAY has an additional argument, the last denoted by W, to specify a
column of weights. It is useful for analyzing experiments with missing observations,
balanced incomplete block designs, partially balanced incomplete block designs (intra-block
analysis), etc. or even undesigned experiments. A useful procedure is to assign a weight of
1 to each measurement present and to assign a weight of if a measurement is missing. If

each cell in a table contains more than one measurement, TWOWAY can be used with the

averages of each cell and using the number of measurements in each cell as the weight.
Weights are entered into column W, one row below another, just as is done for the
measurements in column Y.

Restrictions on Weights .

(1) The column number W must be less than the column number X.

(2) The column number W must not equal the column number Y.

(3) Weights can not be negative.

(4) There must be at least one positive weight in each row.

(5) There must be at least one positive weight in each column.

(6) The number of weights equal to zero must be less than (r-l)(c-l).

Violations of these restrictions result in the following error messages. In each case, the

instruction is not executed.

(1) *** ILLEGAL ARGUMENT ON CARD

(2) *** ILLEGAL ARGUMENT ON CARD

(3) *** NEGATIVE WEIGHTS MAY NOT BE USED

(4) * ALL WEIGHTS ARE ZERO. COMMAND NOT EXECUTED

(5) * ALL WEIGHTS ARE ZERO, COMMAND NOT EXECUTED

(6) * DEGREE IS LARGER THAN NO. OF NON-ZERO WEIGHTS.

Caution. The above restrictions can be met and yet there exist patterns of weights
which cause difficulty and no diagnostic is given. The matrix X'WX (X the design matrix and
W the diagonal matrix with weights on the diagonal) can be singular. We know of no solution
to this problem. These situations are not likely to occur, but they can happen. Unusually
large or small values of the coefficients and/or standard deviations may indicate trouble.

If the user is in doubt, the matrix X'WX can be examined (inverted) or the *ACC. DIGITS
column can be checked in the automatic printing after using the appropriate FIT instruction.
An example (provided by B. L. Joiner and J. R. Rosenblatt) is one where the weights for a

3x4 table are as follows:

134



Here, the singular X'WX matrix is

Row/Column 1 2 2 4

1 1

2 1 1 1

3 1 1 1

s

~7 -2 -1 o"

-2 4 3" 2

3 6

-1 2 3 2 2

2 4 2

2 2 4

This means that one of the row or column effects is not estimable. Clearly, the effect of
row 1 plus column 1 is estimable, but the row 1 and column 1 effects, separated, are not
estimable. (The rank of XMVX is 5 because column (6) is the linear combination of columns
(1) through (5): 3(6) = - (l)-8(2)+4(3)+9(4)-3(5) .) The instructions

TWOWAY 3x4, 11, 21, 12

FIT 11, 12, 6, 21 *** 26

would show -1.75 in every row in the column headed *ACC. DIGITS, which is a definite sign of
trouble. If MINVERT were used to invert the (X'WX) matrix the error bound would be -.3+10;
again, indicating trouble.

Automatic Printing .

The automatic printing shows two analyses of variance, rather than one, necessitated by
the unbalance in the table. The first analysis shows Rows adjusted for columns and Columns
unadjusted. The second analysis shows Rows unadjusted and Columns adjusted for Rows. After
the printing of the analyses of variance, a line is printed which tells the number of non-
zero weights used and the number of weights equal to zero. In this form of the instruction,
Tukey's test for non-additivity is not performed. The printing of the coefficients and
their standard deviations has the same form as that for the balanced case. In the table of
standardized residuals, .00 appears in each cell for which the weight is zero.

Automatic Storage .

The automatic storage for this form of TWOWAY is the same as that described above.
Ifcwever, since the two-way table is unbalanced, the Fourier coefficients have little
meaning. The Residual Sum of Squares, the Total (uncorrected) Sum of Squares, and the Sum
of Squares due to the mean are in the three rows (r+c) ,

(r+c+1) and 1. All other numbers in
the column should be ignored.

Example .

Pages 136 and 137 show the automatic printing and set of instructions to give an intra^-

block analysis of the data from a partially balanced incomplete block design described on
page 561 of Kempthorne (1952). There are 9 treatments and 9 blocks, with 3 treatments in
each block. However, the data following the SET instruction are arranged like a 9x9 table
with 9 treatments per block. The value zero is assigned to a treatment which does not
appear in a block and correspondingly a weight of zero is assigned. Here, blocks are rows
and treatments are columns. Hence, in the automatic printing, the first analysis is for
Blocks (rows) eliminating treatments and Treatments (columns) ignoring blocks. This is the
analysis on the right hand side of the analysis on page 562 of Kempthorne (1952). The
second analysis is for Blocks ignoring treatments and Treatments eliminating blocks.

135



fll to * toO i-H O
rsi oo r^

r> *o ** to
rv t-H ,-H to
to

«* to to
00 "3- ^H

o r*-

O^ r-i to

^- lo r-.

vO ** rOO N tO

lo r-J to

< >-!H << sn 1o

Q o
Km

CO t^
m r-. lo r-~

2 u < N H Kl OlO LO O t-I

to Ol to CT>
O0 M o H

3 CTi 00 t^ LD rH \£) E^ LO
i C CM i-H to 00 LO CT> to 00

W gj
CO

to LO to tH Oh- tOH
KH > PC t^ ^3- to LO CM U\ to LO
m o «3" t-H lH t^ LO t-H [~-

ex p-, I—1 t-H C-J r-j rg

&H
o §o co CO

OOOOOOOOO OOOOOOOOO

c^(NjpJc-or^(N)CN3r-j<M rsi(Ni>or-jrgrs]t>ot>j<Ni

o oi lo r-. en cnj r-jMco^tnNtoocoLn

tor-Joou-i^a-LOc-j^o**

th to <—i t--.

tO^OlQ0L0\OH00't
r^tHLooiHOcriTHr^

r-.T—iloot—ioo^i—i r^ocotN^co^tLnwo
^^rJ-NCTiMstOO')

L0C7lHLnON01NCT) TNN
CO CO O O CO 00 O vO

co co co coS -J S i-Ja o
pn t_> co c£ O co

z z<! 2^tu m w 3 U03
y

ran rwi SID P
1

TWE nvj SID TAI

- W W m
« P3 S O UMBOmnSnCO H

HNtO'tU'lONCOtTl

"5- =- "S

ic^c^c^c^pipiDicc:

INtO^LOOtNQOCn

136



T—(

J w bio zu g S

^oovooocnoo

s
fc

co

CO CO
>H

5»
3a
co

a

5 § o OtOOHCOOO o 5 3

a< o u ?: PC,

H ( >

< ro O O O r-\ O O O o >-
n J in sd" O pa H c > C/l

OO CD - a •7

co" OOOONOO LO t-H < M >-
Z LO LO og U,

if o [ ) 13 §< o LO O O O O O LO oo UP to ** H z< m o >H
u Q n <o O CO O O O ^3- O o
cc H ^- CO to >o W >
H

CO Q § Q
^

i-HCNjto-^-Ln^or--ooai

137



Remark .

The variance of the difference between any two treatment estimates, X and Y, is

Var(X-Y) = Var(X) + Var(Y) - 2Cov(X,Y)

The variances and covariances can be obtained by using the sixth form of FIT (section 4.5).
The following instructions after TWOWAY on page 137 would put, 3.4431299, the standard
deviation of the difference between the 3rd and 5th treatment estimates (12th and 14th
estimates) in column 62.

SFIT 10, 11, 17 vectors in 20 *** 36 and put in 37, 37, 37, 37 and 1,41
ADD the value *2,52* to the value *14,54* and put in column 60

MULTIPLY the value *12,54* by -2.0, mult 1.0, add col 60, put in col 61

SQRT of column 61 put in column 62

(Note, here we do not need to know whether treatments 3 and 5 are 1st or 2nd associates.)

STWOWAY analysis for (r) by (c) table, data in col (C) put in (C) and succ. cols

/
:

/

I STWOWAY anal, for (r) by (c) table, data in (C) store from (C) on, wts in col (C) /

/ /

4.5 Regression .

FIT, POLYFIT, SFIT, SPOLYFIT

There are six different forms of FIT and POLYFIT and five different forms of SFIT and
SPOLYFIT. Brief descriptions of the different forms of FIT and POLYFIT are given on pages
152 to 154. These descriptions are preceded by a detailed discussion under the titles
Weights , Restrictions , Example , Automatic Printing , Automatic Storage , Computing Method , and
Remarks" .

The instruction FIT performs a least squares analysis (regression) of a set of data.

Measurements y., i=l, 2, ... ,n=NRMAX, are assumed to be functionally related to k vectors

x , x , ... ,x of fixed, known constants. The statistical model

y. = 6-,x., . + B x„. + . .. + 6. x. . + e.,
' i 1 li 2 2i k ki i'

is used, where the 3's are parameters (coefficients) to be estimated and the e's are
measurement errors. The measurement errors are assumed to be independent with mean zero and
variance a

2
. In an unweighted analysis, a

2 = a 2
, a constant. In the analysis of variance,

it is further assumed that the errors are normally distributed. A summary of the formulas
and notation used in this section is given on page 144.

Since POLYFIT is actually a special case of FIT, the tiiio instructions are described
jointly. In the polynomial of degree d

2 d
y. = a + a,x + a„x^ + ... + a,x + e.,
/ i o 1 2 d i

if x is set equal to x and a is set equal to g , r = 0, 1, ... ,d, the model is

equivalent to the one above for FIT with d = k+1.

138



Weights .

Weighted least squares is performed. The second argument of the instruction designates
the weights to be used. If an unweighted analysis is desired, i.e., equal weights all equal
to 1.0, set the second argument equal to 1.0. Otherwise, use a column of weights.

It is assumed that the measurement errors are normally and independently distributed
with variance given by

V(y.) = a? = k.a2
.w x 1 1

In an unweighted (all weights = 1.0) analysis, k. = 1.0 for all measurements and the

measurements have constant variance. In the presence of heterogeneous (unequal) variance,
the "best" weights to use are w. = 1/k.. If the variances a? (or k.) are known, there is noa IX X V X

problem. If the variances are unknown, the weights have to be estimated. If precise
estimates are unavailable, the advantage of using weights is dubious. Note, an analysis
with k non-zero weights is identical to the analysis obtained using only the measurements
with non-zero weights. It is as though the measurements with zero weight were ignored.

Restrictions .

(1) Negative weights may not be used.

(2) The number of non-zero weights must be greater than or equal to the number of

vectors fitted (k or d+1)

.

(3) Below are the maximum number of measurements, NRMAX, which can be used for a given

number of vectors, k. In FIT, k is the third argument. In POLYFIT, k equals the

degree (3rd argument) plus 1. (Values given are for NBS computer.)

k NRMAX k NRMAX k NRMAX k NRMAX k NRMAX k NRMAX

1 2246 11 813 21 463 31 293 41 187 51 109

2 1922 12 761 22 441 32 281 42 178 52 103

3 1678 13 714 23 421 33 269 43 170 53 96

4 1487 14 672 24 402 34 257 44 161 54 90

5 1335 15 634 25 384 35 246 45 153 55 83

6 1209 16 599 26 367 36 235 46 146 56 77

7 1104 17 567 27 350 37 225 47 138 57 71

8 1015 18 538 28 335 38 215 48 131 58 65

9 939 19 511 29 321 39 205 49 123 59 59

10 872 20 486 30 307 40 196 50 116 60 ***

Violations of these restrictions result in the following fatal errors, respectively:

(1) *** NEGATIVE WEIGHTS MAY NOT BE USED

(2)
*** DEGREE IS LARGER THAN NO. OF NON-ZERO WEIGHTS

C3]
*** INSUFFICIENT SCRATCH AREA

Example .

The following set of instructions produce the automatic printing on pages 140 to 143 to

perform a straight- line regression using the data in section 6.2 of Snedecor and Cochran

(1967).

OMNITAB 6/9/69 EXAMPLE OF STRAIGHT LINE FIT, SNEDECOR, COCHRAN PP 135-140

SET Y = MEAN SYSTOLIC BLOOD PRESSURE IN COL 1

114, 124, 143, 158, 166

SET X = MIDPOINT OF AGE CLASS IN COLUMN 3

35, 45, 55, 65, 75

DEFINE 1.0 INTO COLUMN 2

FIT COL 1 WTS 1.0, 2 VEC'S IN COLS 2 AND 3

139



to

CJ3

O O O CD Oo o o o oo o o o o

OCOOIOON

en 1*0 t-o o 1^3 ^t-

^ 0> O O O CTi

C71 CD CD CD Ol
-1 OlOOOOt
w OlOOOOl0100001
to lo c*j o t~-j lo

K) (N tO (N

to Uh to
u o w CTl OO O 00 0">

o r> O CO O 00 o
cj 3

KO to K) rO \D
J — 5 C7S VO ^J" ^O CTl

n o o > ro i--- *—1 r-^ ro
Qi u u CD Q HNLTlIs H
o O in t^ ^ N l/l

u Z z CD Q
1-1 OO Q

E- §
NH H H N

to O to Pu— O
tO -J

< 3
iH

—
£

II

U-, Q
>

to

pj O O O O O O
o£ E3 W CD O O O O

1
, o 1—

I

E- to O CD O CD CD
J —

s u tq O CD O O O
Di u 3 ^- C\] O CO \D

s O 1—

1

Q O Q 3 »0 N H ^ OO
u § Pi > t—i r-4 *d- lo o

E- w e« ^H ^H i—( ^ t-H

O, !~J

P-, 1

H t^J 2
to tO O2
P-, Uho 3 o LO

w c/z
CO O ^H

H E- U O O O O O
LO u Z CD O CD O O
S

i—

i

CD O CD O O
w ]

—

'

to < g CD O O O O
J Uh =3 < g

O O O O O
OS s ,-J ^J- "3" to CO \o
<£>

g
ou

h n ^r m\o
rH ^H iH ^H t-H

en M zO
<

H to
<

O O O CD Oo o o o o
o o o o oO O CD O CDO CD CD O CDO O O O O

CVl K) ^" LO

140



141

I
CO

Si



—

IPL,

,

—

N O i-H

PL, O OO O
PL,

o r--o en en
II en f»
CO
LL, CO O
tq O CO
O CO t-H

CJ -*

Bh

O rH
bT o oo o
PL,

I / N to r-^o CO en
II i-i r~

U-,o tq t^ o
8 O to COu •* H

en
E PL,
OSo

£oH COU Sw> 3 to
CO to

CO a en to
CO Q en to
pq i—

i

en toW J CO en loU 2 w
5 3 Pi I" 1 o

HU
B en en

en ^o

-* <a-
LO

rl- \€>

Cn O
01 LD

J (l, 3

to
CO to
en to
en to
en en

0> LO

to i"

m
pl.

"3" Ol
en en
en to

o o* en

co E-

H

142



O to
l-H tO
E-

—

Ph c
CJ Ph

ft
E- PJ
co o
<s u

p< f—, o CO
Ph

i—I cm

co

u
PL,
PL,

PJO

oo CO
PJ
hJ

>->

m
cj Uou J -J

3
pj

». O O PL,

Pi U U o PL,

o o H-

,

u 2 2 o O
pq i—i i—

i

co

ooo CO ^
co

m
,-j

<3
o

LDo CD CO
H H i-j II a o O LD

P-

PS

co

S3
CD

uu
<

CO CO

PJ

1—

I

o X CJ
J „ E-

Pi U s PL,

£ pl o o o t~~ LO r^ to
Ph
PJ

CD
E- 3 Pi i—

I

>* ai o
PJ H h CD u

i
K-1 Ph
Ph

N
PL, 2

r-< to
(—

1

LO
II lE

H cm 2 * cj
CO CO O2

CO CM CM 2
PP S PL, to 1

O < o LO
CD PL,

LT) 2
PJ c/z c PL, to
hJ CO o CO PJ t^ o CO

O CO CM H
«jr E- H U H u r~~ to i—

i

CO CJ 2 co to \o CO

w pig CO $ PhO
CO
CM

CMo 3
J Ph CD -J CO ^H Q

en

l 1
O
CO

lo

CTi M P-
II § s

VD J CO
PJ 2 PJ

ou

l
<
CO

H O
H
2
PL, s

1—

i

<
E-< h O <

PL,
H
CJ

^ co 2 CM CD § O PJ
PJ pj CD O

CD CD a CO
u CD O PJ o
Ph

O CO
to §s u

Ph <£ u Ph
PJ LO 1-1 ll: o
o vO nu Pi

E- 2 PJ
CO O ffl

^s g3 co
p? o < PJ

CM to 1—

1

m sJ CO

8 § *

143



Notation and Formulas for FIT

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27,

28,

29.

30.

31.

32.

Number of measurements : NRMAX -- number of zero weights
Number of predictor variables (vectors)

:

Measurements: v., i=l,2,...,n

Predictor variables x , x ... x

Measurement errors: e. , e„ ... e12 n
Error variance:

Unknown parameters: g , g ... g

Statistical model: errors independent, normal, variance a2

Weights: "best" weights w. = 1/a 2 or 1/k
i i i

Coefficients: estimates of g

Predicted values:

Residuals: deviations from predicted values

Residual standard deviation: s =/lw.z 2/(n-k)ii

Variance- covariance matrix:

Standard deviation of predicted values:

Standard deviation of coefficients

:

Standardized residuals:

Orthonormalization: X'WX = TT' , T triangular, A = (T')
_1

Fourier coefficients:

Squared Fourier coefficients:

Sum of squares: Reduction in total SS due to fitting

Residual sum of squares: (n-k)s 2 = a 2
.

Total (uncorrected) sum of squares: Ew.y2

Cumulative mean square reduction: with r degrees of freedom

Cumulative residual mean square: with (n-r) deg. of freedom

F ratio for testing Ho:g =0

F ratio for testing Ho: 7 g. =
u r i

Gram factors: G =(x'Wx.)
i5

G =[(x'Wx )-(x'W<f.J
a - ... -

v 1 ]r r r r r 1

Vector norms:

Gram determinants:

Multiple correlation coefficient squared:

Accurate digits: obtained from refit to predicted values

144

nxl

nxk
[X , X , . . . jXiJ

nxl
a2 = k.a 2
i i

^kxl

y = Xg + e

W = diag(w.=l/k.)
i i

g = (X'WX^X'Wy

y = xg

z = y - y

s = /(y-y)'W(y-y)/(n-k)

V = s 2 (X'WX)- 1

/diagonals of XVX'

/diagonals of V

z. = /(s 2/w.-s2)
i

v i y

$ = XA

o = *lVy

5?
i

s. = a?
i i

\+i
= (y-y)'W(y-y)

y'Wy

Z^Si/r

&<n-r)

S /Res. Mean Square

[gs.(k-r+l)]/Res. MS

(x;wx
r )

J'
2

nG2/(x'.Wx.)

If=l-Res. SS/Iw.(yi
-y
w)

2

-log
10

|g-6/^|



The data in Snedecor and Cochran (1967) were selected because the book is easily available
and they show many of the calculations required to obtain the results.

The instructions on page 139 illustrate the use of FIT. Here, POLYFIT could be used
more simply by replacing the DEFINE and FIT instructions above by

POLYFIT y in col 1, weights 1.0, degree 1, x in column 2

The automatic printing would be essentially the same as that shown on pages 140 to 143.

Automatic Printing .

The automatic printing consists of "four" pages containing a comprehensive set of
results for analyzing data. Four is put in quotation marks because the printing of results
on one page may be continued on subsequent pages if the number of measurements or number of

predictor variables is large. Each "page" is described separately below.

A three line title appears at the top of pages one, three and four. The title in the
example on pages 140, 142 and 143 is

LEAST SQUARES FIT FOR DATA IN COLUMN 1

AS A LINEAR FUNCTION OF 2 PREDICTOR VARIABLES IN COLUMNS 2, 3

USING 5 NON-ZERO WEIGHTS = 1.0000000

The following are variations in the title which can occur: (1) on the first line 12 spaces
are allowed for the word DATA. If a HEAD instruction (section 1.4) has been used, the 12

characters after the slash (/) in the HEAD instruction are used, (2) if there are more than
11 predictor variables, the column numbers are continued on the next line, and (3) on line

3, the number of zero weights is given if the second argument is a column number.

In a POLYFIT instruction, the second line of the title has the form

AS A POLYNOMIAL OF DEGREE 1 IN VARIABLE X IN COLUMN 11

The 12 characters used for VARIABLE X, are replaced by those following the slash in a HEAD
instruction, if one has been used.

Page One

The following 8 items are printed for each of the (NRMAX) measurements: (1) the row in

the worksheet, (2) the predictor variable, (3) the data (measurements), (4) the predicted
values, (S) the standard deviations of the predicted values, (6) the residuals, (7) the
standardized residuals, and (8) the weights used. Items (3), (4), (5) and (6) are printed
with 8 significant digits. The standardized residuals are printed with 2 decimal places and
4 significant digits are used to print the weights. The standardized residuals are the
residuals divided by their standard deviation. Some remarks on (2) and (3) follow.

(2) (a) POLYFIT. The 12 characters in the first line of the column heading use either
VARIABLE X or the 12 characters after the slash in the HEAD instruction, if one has been
used. Eight significant digits are used to print the predictor variable.

(b) FIT. Either one, two or a maximum of three columns is printed. If a constant
is the first term in the model (which usually is the case), the column of l's is not printed
(unless it is the only vector used). Otherwise, starting with the first vector not
identically equal to one, as many predictor variables are printed as is possible with a

maximum of three. Eight, six or four significant digits are used, depending upon whether 1,

2 or 3 columns are printed. If the values of either two or three predictor variables are
printed, HEAD column is ignored and the word COLUMN is abbreviated to COL.

.

(3) The column heading DATA is replaced by the 12 characters after the slash in the
HEAD instruction, if it has been used.

145



Page Two

1 his page contains four plots of the standardized residuals. The standardized residuals

are used instead of the residuals to (i) have a common vertical scale for all plots going

from -5.75 to +5.75 in steps of 0.5, and (ii) to avoid distortion, in some cases, due to

differences in the standard deviations of the residuals. Item (i) avoids using a different

scale for each set of measurements and makes it possible to present the results in a more

compact form. Only residuals associated with non-zero weights are used in the plots. An

examination of these plots can be very helpful in assessing the adequacy of the statistical

model used. Non-random patterns and/or very large (small) values are evidence of one kind

or another of failure of the model to represent the data. Good discussions of the

examination of residuals may be found in Chapter 5 of Draper and Smith (1968) and Anscombe

and Tukey (1965) . All TITLE instructions are ignored in the printing of this page due to

lack of space.

(1) Upper Left . The standardized residuals are plotted against the order in which the

measurements are entered into the worksheet (row number) . If this order corresponds to the

order in which the measurements were taken, patterns of non- randomness indicate that time

has an effect on the measurements.

(2) Upper Right . The standardized residuals are plotted against the predicted values.

Non-randomness may indicate non-constant variance or that some important variable(s) has

been excluded from the model. The former case may indicate the need to use weights, the

weights used are improper or a transformation of the measurements is required.

(5) Lower Left . The standardized residuals are plotted against the predictor

(independent) ' variable. In a POLYFIT, lack of randomness of the residuals often indicates

the need for extra terms in the polynomial. In a FIT, this plot may or may not have much
meaning, depending upon the order and character of the predictor variables. The predictor

variable used for the plot is the first one which is not identically equal to one (unless

the number of vectors is one)

.

(4) Lower Right . This is a probability plot of the standardized residuals against the

expected value oF" the standardized residuals, assuming that the measurement errors are

normally and independently distributed. The ordered standardized residuals are plotted

against

x
±

= Gau
_1

(p) = 4.91(p
a4

- (1-p)'
14

) ,

where

p = (i - TT/8)/(n + 1 - ti/4), for i > 2 or n > 10

= (5i - l)/(5n +1), for i = 1 and n < 10

and i=l,2,...,n = the total number of points; x is the inverse (percentage point) of the

normal probability integral and the Tukey approximation on the right is used to compute x.

We thank James J, Filliben for providing the formula for p, which is somewhat more accurate

than the more traditional formulas. If the statistical model adequately represents the

data, the points should lie approximately on a straight line. Although the measurement

errors may be independent, the residuals are not. This fact is of little consequence if the

number of measurements is large compared to the number of predictor variables.

Page Three

There are two sections, which give the variance- covariance matrix and an analy c ;s of

variance. In both sections, on the extreme left, the heading COL is used in FIT and TERM in

POLYFIT.

146



(a) Variance-covariance matrix of estimated coefficients. The matrix, V = s 2 (X'WX), is

symmetric and only the lower triangular portion is printed. If the number of columns
exceeds 7, the matrix is printed in blocks. All rows of the first 7 columns are printed in
the first block and subsequent blocks are printed as required to complete the triangular
matrix. The diagonal entries are the variances of the parameter estimates (coefficients)
and the off-diagonal values are the covariances between pairs of estimates. The standard
deviation of any linear combination of the estimates, a'b, is the square root of a'Va.

(b) Analysis of variance. This is not the most common analysis of variance, but rather
several analyses combined into one. The results depend upon the order in which the vectors
are entered (appear in the instruction); unless the vectors are orthogonal. The
instructions

FIT 1, 1.0, 3, 11, 12, 13

and

FIT 1, 1.0, 3, 13, 12, 11

would yield the same results in other portions of the printing, but here the results would,
in general, differ. The ten columns in the printing are described under (1) through (10)
below.

(1) Shows the terms 0, 1, 2, ... ,dina POLYFIT or the column numbers of the vectors
used in FIT. These numbers are followed by RESIDUAL and TOTAL.

(2) The second column shows a separation of the total sum of squares, £,w.y?
f

into

(k+1) parts
1 x x

S + S + ... + S, + S,, = S12 k k+1 n

with one degree of freedom for each of the k vectors fitted and (n-k) degrees of freedom for
the residual. The second sum of squares is the sum of squares due to fitting the second
vector after having fit the first. The third (if k exceeds 2) sum of squares is the
reduction due to fitting the third vector after having fitted both the first and second
vectors, and so on. The entries in this column are the squared Fourier coefficients and are
identical to the numbers in the first (k+2) rows in the column of Fourier coefficients
discussed under Automatic Storage.

(3) For the rth line of the printing, the cumulative mean square reduction equals

where S. is the ith sum of squares shown in the second column. In the example on page 142

50654.697 = (99404. 994+1904. 3999)/2.

(4) The cumulative degrees of freedom 1, 2, ... , k are printed and followed by the
degrees of freedom for the residual, (n-k), and for the total, n. The number in the rth
line, r, is the number in the denominator of the expression used to compute the cumulative
mean square reduction above.

(5) The cumulative residual mean square on the rth line is

k+1

Ii=x+1V^
The last number in the column is the residual mean square, which equals the residual sum of
squares divided by the residual degrees of freedom. On page 142, 10.533333 = 31.599998/3
and 483.99998 = (1904. 3999+31. 599998)/4. The square root of the residual mean square
(10.533333) equals the residual standard deviation (3.2455096) shown on the following page.

147



(6) Gives the degrees of freedom for the cumulative residual mean square, which equals
(n-r) on the rth line.

(7) The F-ratio printed is the sum of squares (due to coefficient] divided by the
residual mean square with 1 and (n-k) degrees of freedom. On page 142, 9437.183 =

99404.994/10.533333. The F-values are printed with 3 decimal places.

(8) Gives the significance level of the F-ratio on the same line in (7), under the
hypothesis that the corresponding parameter in the model equals zero. These significance
levels should be interpreted carefully. Three decimal places are shown. The value .001 on
page 142 is the probability that a F-ratio will exceed 180.797 if there is no linear term in
the model.

(9) The F-ratio on the rth line is

rk+l S
k+1

)/(k-r+l)as.tj i=r l

Residual Mean Square"

[
k
_ S./Ck-r+l)

Residual Mean Square

with (k-r+1) and (n-k) degrees of freedom. It is used to test the hypothesis that all of
the parameters r, r+1, ... , k equal zero. On page 142

4808.990 = (99404. 994+1904. 3999)/2 divided by 10.533333

with 2 and 3 degrees of freedom.

(10) Gives the significance level for the F-ratio on the same line of (9).

Page Four

This page is divided into three parts: (a) estimates, (b) accuracy, and (c) estimates
from refit omitting last term.

(a) Least squares estimates of the unknown parameters are printed on the left. On the
extreme left, the column heading TERM appears with POLYFIT and the heading COL with FIT.

This is followed by a listing of the estimates (coefficients) , standard deviations of the
estimates and the ratios of the estimates to their standard deviations.

The residual standard deviation and the associated degrees of freedom are printed at the
bottom. The degrees of freedom equals the number of non-zero weights minus the number of
vectors fitted, k, which is the third argument in a FIT instruction or the third argument
plus one in a POLYFIT instruction. If the model is correct (satisfactory) the residual
standard deviation is an estimate of a.

The ratio can be used to perform t-tests and construct confidence intervals for the
parameters in the model. However, see references in section 4.8 for a discussion of correct
procedures.

(b) Next, a column headed *ACC. DIGITS is printed. The algorithm used in FIT (POLYFIT)

is generally accurate, but no least squares fitting algorithm is fully accurate in all

cases. (See Longley (1967), Wampler (1969) or Wampler (1970).) Computational accuracy is

affected by several factors; in particular (i) the number of measurements and vectors, (ii)

the scaling of the measurements and vectors, (iii) how closely the vectors are related
(correlated), and (iv) the number of digits in the raw data. The values under *ACC. DIGITS
provide an indication of how well the results have been computed. Loosely speaking, values

148



between 6. and 8. indicate computations are accurate. Values less than 4.0 indicate some
source of computing difficulty. Negative values cry out for an investigation.

Mathematically, singular matrices cannot be inverted. However, in a computer, an
algorithm sometimes fails to distinguish between a singular matrix and a non-singular
matrix. This can happen here. Users will sometimes use a set of vectors which is not of
full rank. For example, one of the columns may inadvertently contain all zeros. Any of the
following may indicate trouble: (i) a coefficient exactly equal to zero, (ii) extremely
large or small coefficients or standard deviations of coefficients, and (iii) small values
under *ACC. DIGITS.

The values under *ACC. DIGITS are estimates based upon a refit of the predicted values.
If the calculations are accurate, the two calculations of the coefficients should agree.
(Mathematically, they are exactly equal.) The estimates of accuracy are reasonably
reliable. The smallest and largest possible values are -8.0 and +8.0. If 3 is the
coefficient and g is a coefficient computed from the refit, the accuracy of the computations

. is given by

-logiolce - e)/e|.

See, also, ACCURACY in section 2.6. Negative answers indicate the first digit in the
coefficient is incorrect. In the example on page 143, the first coefficient has an error of
2 in the eighth digit. The second coefficient is correct to eight digits.

The results here apply to the coefficients and provide a general assessment of
computational accuracy. They cannot be generalized to all other computations. For example,
if a measurement equals 15923.648 and the predicted value equals 15923.635, the residual,
0.012681742, may have only 3 or 4 correct digits.

(c) On the right, the coefficients, their standard deviations and the ratio of the
coefficients to the standard deviations are printed from a refit omitting the last term
(vector). Again, the residual standard deviation and degrees of freedom are printed at the

bottom. These results can be usefully compared with the results on the left; particularly
in a POLYFIT. In a FIT, these results may or may not be useful, depending upon the order in

which the vectors appear in the instruction and the importance of the last term. If only
one vector is fitted (or POLYFIT of degree 0) , only the residual standard deviation and
degrees of freedom are printed.

Automatic Storage .

There are six different forms of each instruction. They differ with respect to the

amount of information stored in the worksheet, which depends on the number of arguments in

the instruction as follows:

Form Arguments* No. of Rows* * Storage14 None
2 5 2k+6 C = Coefficients

3 6 n=NRMAX C, R = Residuals

4 7 n=NRMAX C, R, S = Standard deviations of predicted values
5 8 2k+2 C, R, S, F = Fourier coefficients
6 10 (k+3)x(k) C, R, S, F, V = Variance-covariance matrix

* Add (k-1) for FIT instruction.
** In last named column (or matrix)

.

Note, (2k+6) and (2k+2) may exceed NRMAX. If so, NRMAX will have to be reset in order to

print the entire contents of the column(s). If (2k+6) or (2k+2) exceeds the number of rows

149



in the worksheet, the spill will be lost. Only as many values as will fit in the column are
stored and no diagnostic is printed.

The user must specify unique arguments for storing the required information. In

POLYFIT 1, 1.0, 3, 2 put in 11, 12, 12 and 13

the Coefficients would be put in column 11 and the Fourier Coefficients in column 13.

The Coefficient column contains:

Rows Description

1 to k coefficients
k+1 to 2k standard deviations of coefficients
2k+l to 2k+6 six values: n = number of non-zero weights

k = number of vectors (degree+1 in POLYFIT)
residual degrees of freedom
residual standard deviation
residual variance
multiple correlation coefficient squared.

The residual variance is the last number under CUM. RESIDUAL MS on Page Three of the
automatic printing. All the remaining values, except the squared multiple correlation
coefficient, appear on Page Four of the automatic printing.

The squared multiple correlation coefficient is

R2 = 1 - Residual Sum of Squares/ J .,w. (y.-y )
2

, where y = £w.y./£w..

The denominator in the fraction is the corrected Total Sum of Squares. If the first vector
is a vector of l's, the corrected Total Sum of Squares is the uncorrected Total Sum of
Squares minus the sum of squares due to fitting the mean (constant term), i.e., the last
number minus the first number under SS = RED. DUE TO COEFF. on Page Three of the automatic
printing. If the first vector is not identically equal to 1, the R 2 has no meaning.

The Fourier coefficient column contains the k squared Fourier Coefficients, the Residual
Sum of Squares, the Total Sum of Squares, and the k Fourier coefficients. The first (k+2)

values are the same as those under SS = RED. DUE TO COEFF on Page Three of the automatic
printing. The Fourier coefficients (see Computing Method below) are the estimates of the
parameters after orthonormalization.

In the sixth form, the last two arguments give the row and column location of the number
in the upper left-hand corner of a (k+3)x(k) matrix. The top (kxk) portion of the matrix is

the (complete) variance-covariance matrix shown on Page Two of the automatic printing. The
last three rows contain the Gram factors, the vector norms and the Gram determinants, which
do not appear in the automatic printing.

The Gram factors are

G
n

= (x'WxJ
15

= (f. ^.x z
)
h

1
v

1 1 ^1=1 i i

G
2

= (x^x
2

- (x^W$
1
)
2
)

5'
2

G
k

= ^k " &W " (X
k
W$

2
)2

" '•• " ^k-/^2

150



where x. is the ith vector of X and
<J>.

is the ith vector of $ = X(T')" 1 and X'WX = TT'

.

The vector norms are the square roots of the diagonal terms of the matrix of normal
equations,

(xMfe.)\ i = l,2,...,k

The Gram determinants are the partial products

n
r

.GVfx'.Wx.),
i=1 i v i i

J '

where r = 1, 2, ... ,k. If the x vectors are orthogonal, the kth Gram determinant equals 1.

If the X'WX matrix is singular, the kth Gram determinant equals zero. The square root of a

quotient in the Gram determinants is the Gram factor divided by the vector norm.

If (R+k+3) exceeds the number of rows in the worksheet, or if (C+k) exceeds the number
of columns in the worksheet, the following informative diagnostic is given

* PARTIAL STORAGE OF MATRIX

Computing Method .

The algorithm used for the solution of linear systems of equations involves a Gram-
Schmidt orthonormaliztion of the predictor variables as described by Davis (1962) and Walsh
(1962). The matrix X'WX of products and cross products is factored into the product TT',
where T is a lower triangular matrix. A set of orthonormal vectors is then formed by
computing $ = XA, where A is the inverse of T' . The matrix product $Wy produces the Fourier
coefficients (see Automatic Storage) used in a number of the calculations. Evidence
indicates the algorithm is comparatively accurate; see Longley (1967), Wampler (1969) and
Wampler (1970). Two slight modifications have been made to improve the accuracy. The sums
of products and cross products are performed using double precision arithmetic. A constant,
the mid-range of the measurements (with non-zero weights) is subtracted from all the
measurements before computations begin and is added back when the computations are complete.

Remark 1 .

Often it is desirable to perform several regressions using the same measurements, but

different numbers of vectors. If the FIT instruction is stored, there is a question as to

how to INCREMENT the instruction. It can only be done if triple asterisks are used. (See

section B1.8.) The following three instructions would perform a FIT using 5, 4, 3, 2 and
finally 1 vector.

1/ FIT 1, 1.0, 5 in cols 11 *** IS

2/ INCREMENT instr 1 by 0, 0.0, -1, and *** -1

PERFORM instr s 1 thru 2, 5 times

Remark 2 .

The procedures described in this section pertain to 1 inear least squares estimation.

Algorithms for non-linear least squares estimation are more difficult and varied. One

procedure which is relatively easy and sometimes works very satisfactorily is the Gauss-

Newton (or Taylor series linearization) method described in section 10.3 of Draper and Smith

(1968). The FIT (or rather SFIT) instruction can be used effectively in each iteration of

this method.

Remark 3 .

Considerable effort has been expended to develop the FIT (POLYFIT) instruction to print

useful results in a readable form. This is not done without some cost to the user, both in

151



computing time and printing charges. We believe incorrect and/or misleading conclusions
based upon an incomplete analysis of data are far more costly than the few additional cents
it takes to print more detailed and easily interpreted results. Users who are particularly
concerned about costs, for one reason or another, always have the option of using one of the
forms of SFIT (SPOLYFIT)

.

Remark 4.

Joan R. Rosenblatt has used a FIT instruction effectively for cubic spline fitting with
fixed knots. See Ue Boor and Rice (1968) for further details on cubic spline
approximations. Three constraints are imposed: at each knot (1) the fitted cubics should
agree, (2) the first derivatives should agree, and (3) the second derivatives should agree.
Let 9. be the knots, i = 1,2, ... ,r, and let

(x-9.)
3 = (x-9.) 3

, if x > 9., and

=0, if x < 9..= i

Then, the model used for a least squares fit is

E(y) = a
Q

+ a
x
x + a

2
x 2

+ a
3
x 3

+ b^x-9^ 3
+ b

2
(x

~ 9
2
} + + ... + b^x-9^.

If the third constraint is relaxed, the following terms should be added to the model

Cjfr-0^ + c
2
(x-9

2 )
2 + ... + c

r
(x-9

r )|.

FIT y in col (C) , weights (E) , (k) variables in columns (C)
,

(C) ... (C)

Provides "four" page automatic printing, but no automatic storage. The instruction has
(k+3) arguments.

/
:

J
I FIT y in (C) , weights (E) , (k) variables in cols (C) ... (C) , put coeffs in (C) /

/ __/

Same as preceding form, but, in addition, the coefficients and standard deviations of
the coefficients are stored in the column designated by the last argument. 2 (k+3) values
are- stored. This form of the instruction has (k+4) arguments. If the FIT instruction in

the example on page 139 is replaced by the instruction

FIT 1, 1.0, 2, 2, 3, 31

then column 31 would contain the 10 numbers 65.100002, 1.3800000, 5.8283787, .10263203,
5.0000000, 2.0000000, 3.0000000, 3.2455097, 10.533333 and .98367770.

/
—— ' ~ ^ — — J

I FIT (C) wts (E) to (k) in (C) . . . (C)
,
put coeffs in (C) , residuals in (C) /

/ /

Same as preceding form, but, in addition, the residuals are stored in the column
designated by the last argument. NRMAX values are stored. This form of the instruction has
(k+5) arguments.

/

/ FIT (C), (E), (k), (C)...(C), put coeffs in (C) , res. in (C) , sd of pv in (C)

/

152



Same as preceding form, but, in addition, the standard deviations of the predicted
values are stored in the column designated by the last argument. NRMAX values are stored.

This form of the instruction has (k+6) arguments.

/ 7
I FIT (C)

,
(E) , (k) , (C) . . . (C) , put in (C) , (C) and (C) , Fourier coeffs in (C) /

/ /

Same as preceding form, but, in addition, the Fourier coefficients are stored in the

column designated by the last argument. 2(k+l) values are stored. This form of the

instruction has (k+7) arguments. If the FIT instruction in the example on page 139 is

replaced by the instruction

FIT 1, 1.0, 2, 2, 3, 31, 32, 33, 34

then column 34 would contain the six values 9.9404994+04, 1.9043999+03, 31.599998,
1.0134100+05, 3.1528558+02 and 43.639431.

/ ~ ~~ ~~
'

'
~ ~7

I FIT (Q, (E), (k), (C)...(C) put in (C) , (C)
,
(C) , (Q vc matrix in (R) , (C) /

/ /

Same as preceding form, but, in addition, the variance-covariance matrix, the Gram
factors, vector norms and the Gram determinants are stored in a (k+3)x(k) matrix starting in

row (R) of column (C) , designated by the last two arguments. This form of the instruction
has (k+9) arguments. If the FIT instruction in the example on page 139 is replaced by the

instruction

FIT 1, 1.0, 2, 2, 3, 31, 32, 33, 34 and 1,41

then the variance-covariance matrix

33.969998 -.57933331
-.57933331 .010533333

would be put in rows 1 and 2 of column 41 and 42, the Gram factors 2.2360680 and 31.622776

would be row 3 of columns 41 and 42, the vector norms 2.2360680 and 1.2698425+2 would be in

row 4 of columns 41 and 42, and the Gram determinants 1.0000000 and .062015503 would be in

row 5 of columns 41 and 42.

POLYFIT y in col (C) , using weights (E) , of degree (d)
,
predictor x in col (C)

Provides "four" page automatic printing of results, but does not provide any storage.

This instruction has 4 arguments. The degree of the polynomial, d, may equal zero.

/ 7
I POLYFIT y in col (C) , wts (E) , degree (d) , x in (C)

,
put coefficients in (C) /

/ /

Same as preceding form, but, in addition, the coefficients and standard deviations of
the coefficients are stored. A total of 2(d+4) values are stored. This form of the

instruction has 5 arguments.

/
' 7

I POLYFIT y in (C) , wts (E) , deg (d) , x in (C)
,
put in (C) , residuals in (C) /

/ _____/

153



Same as preceding form, but, in addition, the residuals are stored in the column
designated by the last argument. NRMAX values are stored. This form of the instruction has
6 arguments.

/ ~~ ~ '

~~7
I POLYFIT (C) , (E)

,
(d) , (C) , put coeffs in (C) , res in (C) sd of pv in (C) /

/ /

Same as preceding form, but, in addition, the standard deviations of the predicted
values are stored in the column designated by the last argument. NRMAX values are stored.
This form of the instruction has 7 arguments.

/ 7
I POLYFIT (C) , (E) , (d) , (C)

,
put in (C)

,
(C) , (C) and Fourier coeffs in (C) /

/ /

Same as preceding form, but, in addition, the Fourier coefficients are stored in the
column designated by the last argument. 2(d+2) values are stored (if there is sufficient
room in the column). This form of the instruction has 8 arguments.

/ 7
I POLYFIT (Q , (E) , (d)

, (C)
,
put in (C) , (C) , (C) , (C) and vc matrix in (R)

,
(C) /

/ /

Same as preceding form, but, in addition, the variance -covariance matrix, the Gram
factors, the vector norms and the Gram determinants are stored as a (d+4)x(d+l) matrix
starting in row (R) of column (C) , designated by the last two arguments. This form of the
instruction has 10 arguments.

SFIT y in (C) , weights (E) , (k) variables in cols (C) ... (C)
,
put coeffs in (C)

/ 7
I SFIT (C) wts (E) to 00 in (C)...(C), put coeffs in (C) , residuals in (C) /

/ I

I 7
I SFIT (C), (E), 00, (C)...(C), put coeff in (C) , res. in (C) , sd of pv in (C) /

/ I

I 7
I SFIT (C) , (E) , (k)

,
(C) . . . (C)

,
put in (C) ,

(C) and (C) , Fourier coeffs in (C) /

/ I

I 7
I SFIT (C)

, (E) , (k) , (C) . . . (C) put in (C) , (C) , (C) , (C) vc matrix in (R)
,
(C) /

/ /

SPOLYFIT y in col (C) , wts (E) , degree (d) , x in (C)
,
put coefficients in (C)

154



/

/ SPOLYFIT y in

/

(Q, wts CE), deg (d) , x in (C)
,
put in (C) , residuals in (C)

/

/

/

/

/ SPOLYFIT (C),

/

(E), (d), (Q, put coeffs in (C) , res in (C) sd of pv in (C)

/

/

/

/

/ SPOLYFIT (C),

/

(E), (d), (C), put in (C) , (C)
,

(C) and Fourier coeffs in (C)

/

/

/

/

/ SPOLYFIT (C),

/

(E), (d), (C) put in (C)
,
(C) , (C) , (C) and vc matrix in (R)

, (C)

/

/

/

4.6 Correlation .

CORRELATION, SCORRELATION

Correlation describes the linear , statistical , relationship between two normally
distributed variables. Correlation techniques can be used effectively in prediction and

model building problems. Unfortunately, correlation coefficients are often used and
interpreted incorrectly, because they are (i) used when a relationship is not linear, (ii)

used to imply a causal rather than statistical relationship, (iii) used when the variables

are not normally distributed, (iv) misconstrued as real when they are spurious, and (v) used
blindly when outliers are present or when groups of data are not validly combined. See the

references in section 4.8 for more details. To aid the user in the thoughtful use and

interpretation of correlation coefficients, a CORRELATION instruction automatically prints
three different types of correlation coefficients and four other tables for auxiliary use.

An additional technique, which is not part of the instruction, is to plot pairs of variables

(scatter diagrams) and also residuals. Liberal use of plots can be very helpful in

extracting the relevant information in the data and in avoiding misinterpretations.

There are three different forms of CORRELATION which differ only with respect to the

amount of information stored. In each case, the number of variables used (first argument)

must be greater than 1 and less than 100. The arguments in each form are all integers and

the number of arguments is equal to the first argument plus one, three or five,

respectively, in the three forms.

Each form of the instruction provides an automatic printing of seven different tables.

Pages 156 and 157 give the automatic printing and the set of instructions for some data

taken from page 216 of Draper and Smith (1968). (Note, in their correlation matrix
-0.615790 should read -0.615970; 0.615790 should read -0.615970; and 0.769950 should read

0.767950). The title at the top of the first page gives the number of variables used and

the number of measurements (NRMAX) . The seven tables are described below. Any reader who

is in doubt about the meaning of a particular number would be well advised, on first use of

the instruction, to calculate quantities directly by other means. Some methods for doing

this are sketched in the descriptions which follow. Throughout, n=NRMAX will denote the

number of measurements and p (first argument) the number of variables.

If the number of variables, p, is less than or equal to 10, all tables are printed in

their entirety. If p exceeds 10, tables are printed in blocks with 10 or less columns in

each block.

Unfortunately, it is difficult to give a single reference for all seven tables in the

automatic printing. Non-statisticians are urged to consult a statistician for assistance in

the interpretation of the results. A reference is given for each table, but a full

155



a.

s fc
fcw ww oJ u

§ 2
1—

1

O
5, h

o t-.O CO
O CMo >o

or- Hooi <C

o o w

O COo r-o to >o

o t--

O LT1O rH

O f-O M3O iHo r-.

O LO oO (-4 COONO AO i—1 t~-

2
iH 1 U

O (Nl t>-

O LO rHO ^O O

O oo COO f- Oo o\ CM fcO >0 r-
2

rH o

o r-- oiO t—f ^tocooo o o

O LO LO

O CM o

ONOWOKIOHO 00 i-H OO \D \0 00

o csj r-- oiOrfNOO O O O

o r-- \o «*
O i—I O LOO rO lo oO "* ^ T-i

O «tf" O t-\

O r-0 O CM
O fO IOCO

OOlNflOOvOWOHvOOOO *0 LO \Q

i—t rsj to ^j- r—I <N1 tO "3-

156



II
B, O
CO o
z. ^

Uh toH
2 2

w c£
i-H tq
U a*

B, Ol
cl, o>wo -u .-J

z.zo o
l-H OH <
35

CM r~- 01 o 2 5
CM r-~ cn o o -J
L/} to -T o c_> tu
00 Ol 00 o wJ to

to S
"li- Ol o Di
en Ol o 00

Sfe"* — o VO
cr> OO o tn w

to u

w
* o \o r-~

f-H LOZ Ol
«a- o r~^ Olo o vO Ol* — in LO w

Z

o oo o
• o

CTl O

o
t/) —

os z
ij

—
r

)

L"u ft,

«H COw

s >
JO^NNHr-1 LO tO \0 ^J- ^foUHnonoocctoaoi

tO H N tN tO (M H M HO tZ

z *

<Cr-IOOOCnOOOrs)l—I

O tO LO LO p O Cn LO LOO O O \D u O MDONHLO >-H O O rs] cn OO LO LO «3"O tH r~- r-i i-H O O cn LO O CO cn ^-

157



understanding is best achieved by consulting several references. Kendall and Stuart (1961)
is perhaps the best single reference.

by

(1) Simple Correlation Coefficient .

The simple (product moment) correlation coefficient for two variables x and y is given

r
xy

I1=1 (\ - *) (yi
- y)

Ci c*i - *)
2

Ci <y± - ^

. where x is the average of the x measurements and y the average of the y measurements. See,
for example, section 1.6 (page 33) of Draper and Smith (1968) or Chapter 7 of Snedecor and
Cochran (1967). Clearly, the correlation between any variable and itself is 1.0. Hence,
the upper left to lower right diagonal entries in the table are always equal to 1.0. Also,
it is clear that r = r , so only the lower half of the table is printed. The average

of column 12 is 10.622222 and the average of column 13 is 22.422222. The sums of squared
deviations about the averages are shown in the calculation of the correlation coefficient
below:

-8.1644448

xy
\J

(4.4555554) (502.81554)

-8.1644448
47.332045

-.17249296

A single correlation coefficient can be obtained by using a FIT instruction and the formula

xy

\J S
2

+ (n-2)s-
2

For the above example
r = -.016237455
xy

/(-.01623745S) 2 + 7(.035046006) 2

= -0.17249296

(2) Significance levels of simple correlation coefficients .

For each pair of variables (x and y) , the F-statistic

F M, n-2) = (n-2)r
2

/ (1 - r
2

)
xy xy

with 1 and (n-2) degrees of freedom is computed. Here we are making use of the fact that F
= t squared. From which the significance level

158



S = Pr(F exceeds F )

is computed.

If the "true" correlation coefficient is equal to zero, then S is the probability that in a

random sample (of the same size) the absolute value of a sample correlation coefficient will
exceed the absolute value of the observed correlation coefficient. For columns 12 and 13

F = 7(0. 029753822)/(l-0. 029753822) = 0.21466382 and S = 0.6572.

The value of S can be easily verified by using the appropriate F PROBABILITY instruction
(see section 4.7). Small values (less than .05 for example) of S indicate that the
correlation coefficient is significantly different from zero. In this case, S is very large
and there is a lack of evidence that columns 12 and 13 are correlated. However, see the
next two descriptions for contrary evidence.

(3) Partial Correlation Coefficients .

When more than two variables are under study, the simple correlation coefficient can be
seriously distorted by the effect of other variables. The partial correlation coefficent
may overcome this difficulty by measuring the correlation between two variables after
eliminating the effect of the remaining variables under study (remaining variables held
constant) . The user should compare the simple correlation coefficients with the partial
correlation coefficients. Any "large" discrepancy indicates that one or more of the
remaining variables is having an important effect on the relationship. See Kendall and
Stuart (1961), section 27.5, page 318.

Let R = (r..) be the matrix of simple correlations coefficients and let C = R" 1 = (r
1 -1

)

be the inverse of R. Then, the partial correlation between any pair of variables, i and j,
with the remaining variables fixed (held constant) is

-r
ij

r . .
= .

!J • /- -,- A A

By using MINVERT (section 8.5), it can be verified that the partial correlation between
columns 12 and 13 is

- 0.69717001.
1J - / (4.8973892) (3.4156598)

Note carefully that the partial correlation coefficient is 0.6972, whereas the simple
correlation coefficient is -0.1725. The two coefficients not only differ in magnitude, but
also in sign. Thus, the effect of column 11 and/or column 14 is distorting the value of the

simple correlation coefficient. This can be seen further by examining the remaining
coefficients.

(4) Significance Levels of Partial Correlation Coefficients .

For each pair of variables, the following F-statistic is computed from the partial
correlation coefficient r :

xy.

F (l,n-p) = (n-p)r 2
/ (1 - r 2

)
xy. xy.

with 1 and (n-p) degrees of freedom. From which the significance level, S, is computed from

S = Pr( F exceeds Fo )

159



Under the hypothesis that the "true" partial correlation coefficient is zero, S is the
probability that the absolute value of a partial correlation coefficient will exceed the
absolute value of the observed partial correlation coefficient in a random sample (of the
same size). See section 27.22 on page 333 of Kendall and Stuart (1961). For columns 12 and
13,

F = (5) (0.48604604)/(l-0. 48604604) = 4.7284977 and S = 0.0817

Compare this value of S with the value 0.6572 in (2) above.

(5) Spearman Rank Correlation Coefficient .

A rank correlation coefficient is useful when variables can not be measured
quantitatively, but only their ranks can be observed. The rank correlation coefficient can
also be used to avoid the assumption of a bivariate normal distribution. A comparison
should be made between the rank correlation coefficients and the corresponding simple and
partial correlation coefficients. Again, a "large" discrepancy between two comparable
coefficients is an indicator of some abnormality in the data. See Kendall (1948) for
further details.

The Spearman rank correlation coefficient for any pair of variables x and y is computed
from:

Pxv
=

A - D 2
- T

xy x
- T

y
xy

/(A - 2T )(A -

x
2T )

y

where

and

D
xy

=
I- =1 [rank(x.)

- rank(y.)P,

A = (n-l)(n)(n+l)/6,

T
x

= 0/12)1^ - D(tx)(tx
+ 1),

T
y

= Cl/12)I
y
(t
y

- l)(t
y
)(t

y
+ 1),

t = number of ties in a set of tied x's,
X '

t = number of ties in a set of tied y's.
y

'

The quantities T and T are used to make adjustments for ties in the ranks; see

section 4.1. If there are no ties T and T equal zero and
x y '

p = 1 - D 2
/A.

xy

For columns 12 and 13, it can be easily verified using a RANKS instruction (see section
4.1) tliat the rank correlation coefficient equals

120 - 134.5 - 0.5 - 0.0
Pxv

= —
y

i/ (120-1) (120-0)

= -15/119/119.49895 = -0.12552421,

which does not differ greatly from the product moment correlation coefficient -0.1725.

160



(6) Significance Level of Quadratic Fit over Linear Fit .

Underlying the use of a correlation coefficient is the assumption that the two variables
are linearly related. The results in this table are useful in assessing the validity of
this assumption of linearity. The variables are all assumed to be normally distributed.
The numbers printed are the significance levels for a F-test of the hypothesis that the
quadratic term in a quadratic model is zero. The F-statistic used is

F (1,11-3) = [Residual sum of squares (linear model) - Residual SS (quadratic model)]/
c

Residual variance (quadratic model)

with 1 arid (n-3) degrees of freedom. The values of 1 and (n-3), 1 and 6 in our example, are
printed in the title. The significance level, S, is then computed from

S = Pr(F exceeds F )v o J

Small values of the significance level (less than .05, for example) indicate lack of

linearity. The test results differ depending upon which variable of a pair is considered
the dependent variable and which one is considered the independent (or predictor) variable.
Hence, the entire table is printed, rather than just the lower half. The diagonal entries
are always equal to one and have no particular relevance. Tests of hypotheses in linear
regression are discussed in section 13.8 on page 441 of Brownlee (1965).

For a regression of column 12 on column 13, F = (4. 3229856-4. 2779137)/0. 71298562 =

0.063215720 and S = 0.8099. The residual sums of squares can be obtained from using POLYFIT
and the value of S can be verified using F PROBABILITY (see section 4.7). Actually, the

values of F and S are the same as the last numbers in the columns headed F(COEF=0) and P(F)

in the analysis of variance of the automatic printing of a POLYFIT of degree 2 of column 12

on column 13.

(7) Confidence Intervals For Simple Correlation Coefficients .

Both 951 and 991 confidence intervals for the simple correlation coefficients are

printed in a two-way table, using four decimal places, with two entries in each cell of the

table. The .95 and .99 confidence coefficients are printed along the upper left to lower
right diagonal. The 95% confidence limits are printed below the diagonal and the 991

confidence limits are printed above the diagonal. The number in the lower left of each cell

is the lower confidence limit and the number in the upper right is the upper confidence

limit.

The confidence intervals are based on a normal approximation and are computed as

folloivs

:

Lower confidence limit: tanh[z-u//(n-3)]

Upper confidence limit: tanh[z+u//(n-3)]

,

where

and

z = tanh-1 (r)

= Jslcg[(l+r)/(l-r)], (log to the base e)

u = 1.9599640, for 951 confidence interval
= 2.5758295, for 99% confidence interval.

See Chapter 3, page 101, of Morrision (1967). For example, for the 95% upper confidence

161



limit for the correlation between columns 12 and 13, z = tanrr 1 (-0.17249296) = -0.17423494
and the upper confidence limit equals tanh(-0. 17423494+1. 959640//6) = tanh(0. 6259176) =

0.5552. Also, the lower 99% confidence limit equals tanh(-0. 17423494-2. 5758293/76) = tanh(-

1.2258128) =-0.8414. We are 951 confident that the "true" correlation coefficient lies
between -0.7506 and +0.5552 and we are 99% confident that the "true" correlation coefficient
lies between -0.8414 and +0.7051. (The confidence intervals are wide because the sample
size (9) is small.)

CORRELATION between (p) variables in columns (C) , (C) ... (C)

Provides the automatic printing described above with no storage of results.

/
_____________ ______

/ CORRELATION (p) var's in (C) , (C) ... (C)
,
put array of simple coeffs in (R) , (C) /

/
,

/

Same as above, but, in addition, provides for the storage of the simple correlation
coefficients as an array starting in row (R) of column (C) . The instruction

CORRELATION with 4 variables in cols 11 *** 14, put coeffs in 1,41

would put the simple correlation coefficients in the worksheet as follows:

Row/Column 41 42 43 44

1 1.0000000 .68374211 -.61596990 .80175223
2 .68374211 1.0000000 -.17249296 .76795027

3 -.61596990 -.17249296 1.0000000 -.62874596
J_ .80175223 .76795027 -.62874596 1.0000000

This form of the instruction is useful when one wants to perform additional calculations

with the correlation coefficients or when more significant digits are required in the

answers

.

r ^

7
I CORRELATION for (p) in (C) ... (C)

,
put r coeffs in (R) , (C) , rho in (R)

,
(C) /

/
. .

/

Same as above, but, in addition, the partial correlation coefficients are stored as an

array starting in row (R) of column (C) , The instruction

CORRELATION with 4 variables in columns 11 *** 14 store results in 1,41 and 6,41

would put the following partial correlation coefficients in the worksheet:

Row/Column 41 42 43 44

6 1.0000000 .43170931 -.45663585 .10539049
.43170931 1.0000000 .69717003 .72682013

_8 -.45663585 .69717003 1.0000000 -.64778929

9 .10539049 .72682013 -.64778929 1.0000000

This form of the instruction is useful when one wants to perform further calculations using

the partial correlation coefficients or when more significant digits are needed.

162



SCORRELATION (p) var's in (C)
, (C) . . . (C)

,
put array of simple coeffs in (R)

, (C)

/ 7
I SCORRELATION for (p) in (C) ... (C)

, put r coeffs in (R)
,
(C) , rho in (R) , (C) /

/ /

4.7 Probability .

F PROBABILITY, UNIFORM RANDOM

Both of the instructions in this section use two word commands.

F PROBABILITY with (E) and (E) degrees of freedom for (E) put in column (C)

Computes the right-tail area of an F-distribution with the specified number of degrees
of freedom. Let the third argument be represented by F . The probability that a random
variable, which follows the F-distribution with the specified degrees of freedom, exceeds F

is put in the column designated by the fourth argument. In the notation of AMS 55

(Abramowitz and Stegun (1964)), the instruction computes Q(Fo). The instruction

F PROBABILITY with 3.0 and 5.0 degrees of freedom of 5.4095 put in column 46

would put the number 0.050 into column 46.

Numbers specified by the first two arguments should be integers. (If either argument is

not a column number, it should be written with a decimal point.) If numbers are not

integers, the following informative diagnostic is printed:

* NU1 OR NU2 TRUNCATED TO INTEGER

If any value specified by the 1st two arguments is less than 1.0, the value 1.0 is used and

the following informative diagnostic is printed:

* NU1 OR NU2 LESS THAN 1

Any number specified by the third argument must be greater than or equal to zero.

Otherwise, the following informative diagnostic is printed:

* F LESS THAN 0, SET=0

The probability integral is obtained by computing a finite series in double precision

using the formulas on page 946 of Abramowitz and Stegun (1964).

UNIFORM RANDOM numbers starting with (K) put in column (C)

The instruction produces numbers pseudo randomly distributed between and 1 in every

row down to NRMAX. If the number (K) is equal to or greater than 1, the integral part of

(K) is used as the starting value by the random number generator. If the value (K) is less

than 1.0, it is assumed to be a random number and the corresponding starting integer is

computed by the instruction. The value of (K) can be 1 to start with; or a random integer

between 1.0 and 8192.0 can be chosen. All numbers greater than 8192. are reduced modulo

8192.

163



To use the instruction sequentially one can use the last random number generated as the

starting value for the next sequence. For example, if NRMAX=50 and random numbers have been
put into column 21, then the instruction

UNIFORM RANDOM numbers starting with *S0,21* put in column 22

could be used to generate a new sequence of random numbers in column 22. The argument
*50,21* designates the random number in row 50 of column 21.

The algorithm used is an adaption of the one given by Kruskal (1969) . This particular

generator was chosen because it is extremely portable. However, the portability is achieved

at the expense of being optimum. The random number generator is not the most efficient nor

of the highest quality. It should be used experimentally only and with caution. For this

purpose it should be adequate. Because the generator is not optimum, the following

informative diagnostic is always printed when the instruction is used:

* CAUTION, USE EXPERIMENTALLY ONLY. NOT OPTIMUM IN ORDER TO MAKE IT MACHINE IMPENDENT.

REFERENCE - J.B. KRUSKAL, ACM, 12, 92. AND J. H. HALTON, SIAM REV., 12, 1.

4.8 References For Section 4 .

Listed below are references to books and articles which discuss the statistical and

computing techniques and concepts used by the OMNITAB instructions for statistical analysis.

No attempt is made to be complete.

ABRAMOWITZ, MILTON and STEGUN, IRENE (1964). Handbook of Mathematical Functions , NBS

Applied Mathematics Series 55, Superintendent of Documents, U.S. Government Printing

Office, Washington, D.C. 20402.

ANSCOMBE, F. J. and TUKEY, J. W. (1963). The examination and analysis of residuals.

Technometrics, 5, 141-160.

BRADLEY, J. V. (1968). Distribution-free Statistical Tests . Prentice-Hall.

BROWNLEE, K. A. (1965) . Statistical Theory and Methodology in Science and Technology , 2nd

Edition, John Wiley and Sons, Inc.

CROW, E. L. and SIDDIQUI, M. M. (1967). Robust estimation of location. J. Amer. Statist.

Assoc, 62, 353-389.

DAVIS, P. J. (1962). Orthonormalization codes in numerical analysis. Survey of

Numerical Analsis , Ed. J. Todd, McGraw-Hill. Chapter 10, 347-379.

DE BOOR, C. and RICE, J. R. (1968). Least squares cubic spline approximation I - fixed

knots. Report CSD TR 20, Computer Sciences Department, Purdue University, Lafayette,

Indiana '

DIXON, W. J. and MASSEY, F. J., Jr. (1957). Introduction To Statistical Analysis . Second

Edition. McGraw-Hill Book Company.

DRAPER, N. R. and SMITH, H. (1968). Applied Regression Analysis . John Wiley and Sons, Inc.

DUNCAN, A. J. (1965). Quality Control and Industrial Statistics , 3rd Ed., Richard D. Irwin.

EISENHART, C. (1947). Significance of the largest of a set of sample estimates of variance.

Techniques of Statistical Analysis . Ed. by C. Eisenhart, M. W. Hastay and W. A. Wallis,

Statistical Research Group, Columbia University. McGraw-Hill Book Company, pp 375-382.

FISHER, R. A. (1950). Statistical Methods for Research Workers , 11th Ed., Hafner Publishing

Company

.

164



FREUND, J. E. and WILLIAMS, F. J. (1958). fbdern Business Statistics . Prentice-Hall.

GRAYBILL, F. A. (1961). An Introduction To Linear Statistical Models , Vol. 1. John Wiley §

Sons , Inc

.

HOGBEN, DAVID (1968) . An algorithm for computing 951 confidence intervals for the mean and
standard deviation. Unpublished.

HOGBEN, DAVID (1969). Selected references. Precision Measurement and Calibration
,

Statistical Concepts and Procedures . National Bureau of Standards Special Publication

300, Vol 1, H. H. Ku, Ed., 402-407. U.S. Government Printing Office.

KEMPTHORNE, 0. (1952). The- Design and Analysis of Experiments . John Wiley § Sons, Inc.

KENDALL, M. G. (1948). Rank Correlation Methods . Charles Griffin § Co.

KENDALL, M. G. and STUART, A. (1961). The Advanced Theory of Statistics , Vol. 2 Hafner

Publishing Company, New York.

KRUSKAL, J. B. (1969). Extremely portable random number generator. Comm. ACM, 12, 93-94.

LONGLEY, J. W. (1967). An appraisal of least squares programs for the electronic computer

from the point of view of the user. J. Amer. Statist. Assoc, 62, 819-841

MANDEL, JOHN (1964). The Statistical Analysis Of Experimental Data . Interscience

.

MORRISON, D. F. (1967). Multivariate Statistical Methods . McGraw Hill Book Company.

NATRELLA, M. G. (1963). Experimental Statistics . National Bureau of Standards Handbook 91.

U.S. Government Printing Office.

OWEN, D. B. (1962). Handbook of Statistical Tables , Addison-Wesley Publishing Co.

SNEDECOR, G. W. (1956). Statistical Methods, 5th Ed ., Iowa State University Press.

SNEDECOR, G. W. and COCHRAN, W. G. (1967). Statistical Methods . Sixth Edition. Iowa State

University Press.

WALSH, P. J. (1962). Algorithm 127: ORTHO. Comm. Assoc. Comp. Mach. , 5, 511-513. See

also: Barrodale, Ian (1970). Certification of Algorithm 127, ORTHO. Comm. Assoc. Comp.

Mach., 13, 122.

WAMPLER, R. H. (1969). An evaluation of linear least squares computer programs. J. of

Res., B, NBS, 73B, 59-90.

WAMPLER, R. H. (1970) . A report on the accuracy of some widely used least squares computer

programs. J. Amer. Statist. Assoc, 65, 549-565.

ZELEN, M. (1962). Linear estimation and related topics. Survey of Numerical Analysis , Ed.

J. Todd, McGraw-Hill. Chapter 17, 558-584.

165



5. NUMERICAL ANALYSIS .

5.1 Special Integrals .

CERF, ELLIPTICAL FIRST, ELLIPTICAL SECOND, ERROR, STRUVE ONE, STRUVE ZERO

A full description of the complete elliptical integrals and Struve functions may be
found in Abramowitz, M. , and Stegun, I. A., "Handbook of Mathematical Functions", National
Bureau of Standards Applied Mathematics Series 55, Superintendent of Documents, U. S.

Government Printing Office, Washington, D. C. 20402. A full description of the
computational methods used to calculate the error and complementary error function may be
found in Stegun, I. A. and Zucker, R. "Automatic computing methods for special functions,"
J. of Res. NBS-B (Math. Sciences), 74B, 211-224 (1970).

CERF function of (E) put in column (C)

Computes values of the complementary error function

erfc(x) = 1 - erf(x), where

erf(x) = (2//tt)/
x

e
_t

dt.

The range covered is limited by the capabilities of the computer. For the UNIVAC 1108, NBS
computer, computations are performed for |x| £ 26.5. For |x| > 26.5, erfc(x) =0. For the
values .4, .8, 1.2 and 1.6 in column 1, the instruction

CERF of column 1 put in column 2

would put the numbers .57160765, .25789904, .089686025 and .023651617 into column 4.

ELLIPTICAL FIRST integral of (E) put in column (C)

ELLIPTICAL FIRST evaluates the complete elliptical integral of the first kind

Kto =
!l

/2
a-xsin2

9)
-3l
d9

for all positive values of the parameter x less than 1 . (x=k , modulus k) . If the value of
x is greater than or equal to 1.0, the result is set equal to zero and the following
arithmetic diagnostic is given:

** X FOR ELLIPTICAL INTEGRALS IS =1.0 OR GREATER. RESULT IS SET TO 0.0 (n) TIMES.

Let column 23 contain the following values .1, .3 and .5, then the instruction

ELLIPTICAL FIRST integral of col 23 and put results in col 3

will put the values 1.6124413, 1.7138894 and 1.8540747 in column 3.

ELLIPTICAL SECOND integral of (E) put in column (C)

166



ELLIPTICAL SECOND evaluates the complete integral of the second kind

E(x) = J^
/2

(l-xsin 2 9)d9

for all positive values of the parameter x less than or equal to 1.0 (x=k , modulus k) . For

x greater than 1.0, the result is set equal to zero, and the following aritlmetic diagnostic
is given:

** X FOR ELLIPTICAL INTEGRALS IS =1.0 OR GREATER. THE RESULT IS SET TO 0.0 (n) TIMES.

The instruction

ELLIPTICAL SECOND integral of column 23 and put results in col 4

will store 1.5307576, 1.4453631 and 1.3506439 in column 4 assuming column 23 contains the

values . 1 , .3 and . 5 (used above)

.

ERROR function of (E) put in column (C)

Computes values of the error function

erf(x) = (2//rr)/
x

e
_t

dt.

The range covered is limited by the capability of the computer used. For the NBS computer,

UNIVAC 1108, the computations are performed for |x| £ 26.5. For |x| > 26.5, erf |x| = 1.0.

For the numbers .4, .8, 1.2 and 1.6 in column 1, the instruction

ERROR function of the values in column 1 put in column 2

would put the numbers .42839235, .74210096, .91031397 and .97634839 into column 2.

Remark .

Values of the normal probability integral

Gau(x) = (I/v^tt)/^ e'
ht

dt

can be obtained from values of the error function using the relation

Gau(x) = !
s [l + erf(x//2)].

STRUVE ONE integral of (E) put in column (C)

STRUVE ONE evaluates for real, positive values of x, the Struve function

H
x
(x) = (2/^[x 2/(l 2

.3) - xV(l 2
.3

2
.5) + x

G/(l 2
.3

2
.5

2
.7) - ... ]

If column 1 contained the values 0, 2.5 and 5, then the instruction

STRUVE ONE integral of column 1 put results in col 2

will put the values 0.0, .8631542 and .80781195 in column 2.

167



STRUVE ZERO integral of (E) put in column (C)

STRUVE ZERO evaluates, for real, positive values of x, the Struve function

H
q
(x) = (2/tt)[x - x 3 /(l 2

.3
2
) + x 5/(l 2

.3
2
.5

2
) - ... ].

If NRMAX = 2, the instruction

STRUVE ZERO integral of 4.5 and put results in col 3

will put the value -.058543316 into rows 1 and 2 of column 5.

5.2 Polynomials .

HERMITE, LAGUERRE, LEGENDRE, NORMLAGUERRE , TCHEBYSHEV, UCHEBYSHEV

Each of these instructions has exactly 3 arguments. The 1st argument is an integer
(without a decimal point), greater than zero, indicating the order of the polynomial. (All

polynomials of order zero are identically equal to one and are not calculated.) The 2nd and
3rd arguments specify column numbers. The results will be put in the column specified by
the third argument and in successive columns. Assume C3 represents the third argument.
Then, the polynomial results of order one will be put in column C3, order two in column
C3+1, and order n in C3+n-l column. If there are not enough successive columns to put the
results of all the orders requested, the following fatal error message is printed:

*** COLUMN NUMBER TOO BIG OR LESS THAN 1

All the polynomials are computed using the appropriate recursion formulas. The
equations for these recursion formulas may be found in Abramowitz, M. , and Stegun, I. A.,
"Handbook of Mathematical Functions", National Bureau of Standards Applied Mathematics
Series 55, Superintendent of Documents, U. S. Government Printing Office, Washington, D. C.

20402.

The examples below assume that column 11 contains .5, 1.0, 1.5 and 2.0.

HERMITE polynomial of order (n) of col (C) put in col (C) and succ. cols

HERMITE evaluates the polynomial

H
n
(x) = n!2

=o
(-l)

m
(2x)

n- 2m
/(m!(n-2m)!),

where N = [n/2] . The instruction

HERMITE polynomial of order 4 of x in col 11 put in col 2 and succ. cols

will put the following values in columns 2, 3, 4 and 5.

Hj-Cx) H
2
(x) H

3
(x) H

4
(x)

Row/Column 2 3 4 5

1 1.0 -1.0 -5.0 1.0

2_ 2.0 2.0 -4.0 -20.0

3 3.0 7.0 9.0 -15.0

? 4.0 14.0 40.0 76.0

168



LAGUERRE polynomial of order (n) of col (C) put in col (C) and succ. cols

LAGUERRE evaluates the polynomial

L (x) =
l
n

(-l)
ra
Kx

m
/m!,

n i-m=o

wliere K = ( ) . The instruction
m

LAGUERRE polynomial of order 3 of col 11 put in col 7 and succ. cols

will put the following results in columns 7, 8 and 9:

L
x
(x) L

2
(x) L

3
(x)

Row/Column 8^ 9_

1 .5 .125 -.14583333

2_ 0.0 -.5 -.66666666
3 -.5 -.875 -.6875
4 -1.0 -1.0 -.33333333

LEGENDRE polynomial of order (n) of col (C) put in col (C) and succ. cols

This instruction computes the polynomial

P (x) = (l/2
n
)T

N
(-l)

m
Kx

n_2m
T,

n "-111=0

where N = [n/2], K =
(

n
) and T =

(

2n- 2m
). The instructionV n

LEGENDRE polynomial of order 3 of x in col 11 start storing in col 15

will put the following results in columns 15, 16 and 17.

P^x) P
2
(x) P

3
(x)

Row/Column 15 16 1]_

1 0.5 -.125 -.4375

2 1.0 1.0 1.0

3 1.5 2.875 6.1874999
4 2.0 5.5 17.0

NORMLAGUERRE polynomial of order (n) of col (C) put in col (C) and succ. cols

NORMLAGUERRE scales the Laguerre polynomial with the factor n!, NL (x) = n!L (x) . Thus,

the instruction

NORMLAGUERRE polynomial of order 3, x in col 11 start storing in col 2

will put the following results in columns 2, 3 and 4.

169



NL
1
(x) NL

2
(x) NL

3
(x)

//Column 2 3 4

1 .5 .25 -.875

7 0.0 -1.0 -4.0

3 -.5 -1.75 -4.125
4~ -1.0 -2.0 -2.0

TCHEBYSHEV polynomial of order (n) of col (C) put in col (C) and succ. cols

TCHEBYSHEV computes the Chebyshev polynomial of the first kind

T
n
(x) = (n/2)^

=o
(-l)

m
(2x)

n- 2m
(n-m-l)!/(m!(n-2m)!),

where N = [n/2] . The instruction

TCHEBYSHEV polynomial of order 2 x in col 11 start storing in col 50

will store the following values in columns 50 and 51.

T
x
(x) T

2
(x)

Row/Column 5Q_ 51

1 .5 -.5

2 1.0 1.0

3 -1.5 3.5
4" 2.0 7.0

UCHEBYSHEV polynomial of order (n) of col (C) put in col (C) and succ. cols

UCHEBYSHEV evaluates the Chebyshev polynomial of the second kind

U
nW = C (-D

m
(2x)

n" 2m
(n-m)!/(m!(n-2m)!),

where N = [n/2] . The instruction

UCHEBYSHEV polynomial of order 4 x in col 11 start storing in col 23

will put U (x), U (x), U (x) and U,(x) in columns 23, 24, 25 and 26, respectively, as

follows:

Row/Column

1

2

3
4"

^Cx) U
2
(x) U

3
(x) U

4
(x)

23 24 25 26

1.0

2.0
3.0
4.0

0.0
3.0
8.0

15.0

-1.0

4.0
21.0
56.0

-1.0

5.0
55.0

209.0

170



5.3 Iteration .

ISETUP, ISOLATE, ITERATE

These instructions provide the most powerful, general method for: finding approximations
to the roots X of the function Y = f(X), finding values of an inverse function, or inverse
interpolation. The instruction ISOLATE may be used to find multiple roots for a single
function value, whereas ITERATE, in conjuction with ISETUP, may be used to find a single
root for each of several function values.

The instructions ISETUP, ISOLATE and ITERATE locate the values of x, in the column
designated by the 1st argument, such that the corresponding values of y = f(x), in the
column designated by the 2nd argument, bracket the desired Y's in the column designated by
the 3rd argument. Here, X denotes an exact root and x an approximation. Hence, the desired
Y = f (X) and y = f (x). In ISOLATE, the 3rd argument is a constant, thus ISOLATE locates all
sets of values. The other two instructions locate one set of values for each desired Y.

Each of the instructions ISETUP and ITERATE has 4 arguments; all column numbers. Let
the arguments be CI, C2, C3 and C4. Column CI contains values of x, column C2 corresponding
values of y = f(x) and column C3 the desired values Y = f(X). Results are put in the 4

consecutive columns C4, (C4+1), (C4+2) and (C4+3) . Each instruction looks for two adjacent
values of y, y. and y... , in column C2 which bracket the desired value, Y., in column C3,

j j+1 i '

i.e., y. < Y. < y.,., if the y's are monotonic increasing, or y.,, < Y. < y., if the y's are
j l 3+1 J+1 i j

monotonic decreasing. The average of these two values, y. and y. +1 , is put in column (C4+2)

.

The desired value, Y., is put in column (C4+3) . The average of the corresponding values of

x in column CI, x. and x , is put in column (C4+1). The instruction then inserts 3 values

at equal intervals between x. and x and puts all 5 values in column C4. The process is

repeated for each desired Y. The results stored are summarized in the following table.

C4 C4+1 C4+2 C4+3

Xj cVVl)/2 cvyj+1
)/2

x.+lA
J

X. + 2A
J

X.+3A
J

Vi
where A = (x.

,
-x.)/4.

J+1 J

The last two arguments of ISOLATE indicate storage columns. The information stored in

these two columns is the same as C4 and C4+1 in ISETUP and ITERATE.

NRMAX is set equal to 5 times the number of values located (or (p+2) times the number
located by ISOLATE). Therefore, NRMAX may be either increased or decreased. If no values
are located, the informative diagnostic

* ITERATION HAS FOUND NO VALUES

is printed and the value of NRMAX is not changed.

The following informative diagnostic will be given, if the number of results to be

stored is greater than the number of rows in the worksheet (normally, 201):

* WORKSHEET IS TOO SHORT TO ACCOMMODATE ALL THE VALUES GENERATED BY THIS COMMAND.

171



If a root is found exactly, only one number is put in column C4 and NRMAX is reset to 1.

The values in the column specified by the first argument of ISOLATE or ISETUP should be
monotonic. If this is not the case, the command will be executed but the following
informative diagnostic will be given:

* 1ST COLUMN OF ISETUP OR ISOLATE IS NOT MONOTONIC OR IS A CONSTANT.

This instruction is used initially to set up values needed by the instruction ITERATE.
The following set of instructions uses ISETUP and ITERATE to find the values of x,

approximating X, for which Y = cos(X) = .6, .7 and .8. The results of using this set of
instructions are shown on page 173.

OMNITAB EXAMPLE OF ISETUP AND ITERATE
GENERATE X EQUAL TO (.1) 1.0 IN COL 1

GENERATE Y EQUAL TO .6 (.1) .8 IN COL 14

COS OF X IN 1 PUT RESULT IN COL 12

PRINT 1 12 14 WITH 6.0 SIGNIFICANT DIGITS
ISETUP X IN 1, Y IN 12, DESIRED Y IN 14 START STORING IN 1

TITLE1 RESULTS OF INSTRUCTION ISETUP
PRINT COLS 1***4 WITH 6.0 SIGNIFICANT DIGITS
1/COS OF X IN 1 PUT Y IN 12

2/ ITERATE X IN COL 1, Y IN 12 DESIRED Y IN 14 PUT IN 1

3/IFEQ COL 3 TO COL 4 TOLERANCE .0001
PERFORM INSTRUCTIONS 1 THRU 3 100 TIMES
TITLE1 SOLVE COS (X) =.6, .7, .8 FOR X BETWEEN AT© 1

PRINT 2 3 4 WITH 6.0 SIGNIFICANT DIGITS

In the 1st set of printed results, column 1 initially contains generated values which
are supposed to bracket the values of X. Column 12 contains the corresponding values of y =

cos(x) and column 14 the desired cosines, Y = .6, .7 and .8. These are the values used by
the instruction ISETUP.

The 2nd set of printed results shows the results of using ISETUP. For Y = .6, ISETUP
determines that the bracketing values of y in column 2 are 0.621610 and 0.540302 and the
corresponding values of x in column 1 are 0.9 and 1.0. The instruction then inserts 3

values of x (.925, .95 and .975) at equal intervals between .9 and 1.0. These 5 values were
then put in the first 5 rows of column 1. The average of .90 and 1.0, .95, was put in row 1

of column 2, the average of the corresponding cosines was put in column 3 and the desired
value . 6 was put in row 1 of column 4 . This process was repeated for Y = . 7 and Y = . 8

.

The numbers in rows 6 through 10 of column 1 were obtained for Y = .7 and the values in rows
11 through 15 were obtained for Y = .8. Before ISETUP was used, NRMAX was equal to 11.

But, after ISETUP was executed NRMAX was set equal to 15 = 5x3.

The following set of instructions uses ISOLATE to solve the equation sin(X) = 0.0, for
all values of X between 1.0 and 5.0. The results of using this set of instructions are
shown on page 174.

172



OMNITAB EXAMPLE OF ISETUP AND ITERATE PAGE

MN 1 COLUMN 12 COLUMN 14

0. 1.00000 .600000
.100000 -.995004 .700000
.200000 .980067 .800000
.300000 .955336
.400000 .921061

.500000 .877583

.600000 .825336

.700000 .764842

.800000 .696707

.900000 .621610

1.00000 .540302

OMNITAB EXAMPLE OF ISETUP AND ITERATE
RESULTS OF INSTRUCTION ISETUP

PAGE

COLUMN COLUMN COLUMN 3 COLUMN

.900000

.925000

.950000

.975000
1.00000

.950000

.750000

.650000

.580956

.730774

.795089

.600000

.700000

.800000

.700000

.725000

.750000

.775000

.800000

.600000

.625000

.650000

.675000

.700000

OMNITAB EXAMPLE OF ISETUP AND ITERATE
SOLVE COS (X) =.6, .7, . 8 FOR X BETWEEN AND 1

PAGE

COLUMN COLUMN COLUMN

.927295 .600000 .600000

.795361 .700027 .700000

.643506 .799997 .800000

173



OMNITAB EXAMPLE OF ISOLATE
SOLVE SIN(X)=0.0 FOR X BET!VEEN 1 AND 5

PAGE

COLUMN 1

1.0000000
1.5000000
2.0000000
2.5000000
3.0000000

COLUMN 2

.84147098

.99749498

.90929742

.59847214

.14112001

COLUMN 31

3.5000000
4.0000000
4.5000000
5.0000000

-.35078323
-.75680249
-.97753011
-.95892427

COLUMN 1

3.0000000
3.1250000
3.2500000
3.3750000
3.5000000

COLUMN 2

.14112001

.016591892
-.10819513
-.23129381
-.35078323

COLUMN 31
3.2500000

COLUMN 1

3.1250000
3.1562500
3.1875000
3.2187500
3.2500000

COLUMN 2

.016591892
-.014656821
-.045891223
-.077080811
-.10819513

COLUMN 31

3.1875000

COLUMN 1

3.1250000
3.1328125
3.1406250
3.1484375
3.1562500

COLUMN 2

.016591892

.0087800407

.00096765344

.0068447927

.014656821

COLUMN 31
3.1406250

COLUMN 1

3.1406250
3.1425781
3.1445313
3.1464844
3.1484375

COLUMN 2

.00096765344

.00098547115

.0029385920

.0048917017

.0068447927

COLUMN 31
3.1445313

COLUMN 1

3.1406250
3.1411133
3.1416016
3.1420898
3.1425781

COLUMN 2

.00096765344

.00098547115

.0029385920

.0048917017

.0068447927

COLUMN 31
3.1416016

174



OMNITAB EXAMPLE OF ISOLATE
NOTE SOLVE SIN (X) =0.0 FOR X BETWEEN 1 AND S

GENERATE TRIAL VALUES OF X 1. (.5) 5. IN COL 1

NOTE1 COLUMN 1 COLUMN 2 COLUMN 31
1/SIN OF X IN COL 1 PUT SIN(X) IN COL 2

1.1/ SPACE
1.2/PRINT NOTE
1.3/NPRINT COLS 1,2,31
2/ ISOLATE X IN COL 1 FOR Y IN COL 2 VALUE=0.0 PUT IN COL 1,31
PERFORM INSTRUCTIONS 1 THRU 2 5 TEES
SPACE
PRINT NOTE
NPRINT COLS 1,2,31

The initial values of x in column 1 and y = sin(x) in column 2 are shown in the 1st
printing of columns 1, 2 and 31. NRMAX equals 9. The ISOLATE instruction is repeated five
times with results printed after each execution. Since there is only one value of X between
1.0 and 5.0 for which sin(X) = 0.0, column 31 has one result. The value in column 31 tends
to come closer to the correct value, it = 3.1415927, each time ISOLATE is used. Column 1

contains the 5 nearest values of x for which sin(x) =0.0 (1.0<x<5) and column 2 contains
the corresponding values of y = sin(x). NRMAX is decreased to 5 after the first time
ISOLATE is used.

/ J
I ISOLATE x in (C)

, y in (C) , for (K) , use (p) points, put in cols (C) and (C) /

L /

This instruction is the same as the one above, however the (p+2) nearest values of x are
located rather than five.

The ITERATE instruction is used in the repeat mode and performs exactly like ISETUP. In
the example for ISETUP, ITERATE was used to refine the values of x until the specified
absolute tolerance was met (e.g., .0001 in the IFEQ instruction). The 2nd PRINT shows the
desired values of cos(x) = .6, .7 and .8 in column 4. Column 2 contains the values of x
found by ITERATE and column 3 contains the corresponding values of cos(x), approximating the
values in column 4. The 3rd PRINT shows the results after the tolerance has been satisfied.
That is the values in column 3 must be equal to the values in column 4 within the tolerance
of .0001.

Note, if y = f (x) approximates the desired Y = f (X) to within the specified tolerance,
this does not necessarily mean that the value of x found by ITERATE will approximate X
within the specifed tolerance.

5.4 Analysis .

HARMONIC, INTERPOLATE, MAXMIN, SOLVE

HARMONIC analysis of y in col (C) for (n) ordinates, put coefficients in col (C)

HARMONIC evaluates the coefficients A, and B, for the periodic function

y. = A + T
r

1
Acos(k0.)+ V

s
n
B,sin(k9.),

' L L i=l Tc i y L x=\ k l

175



where i=l,2, . . . ,n and 2<n<NRMAX; r=[n/2], s=[(n-l)/2] and n=l+r+s; 9 = 2ttx/T, T is the
period and 9. = (i-l)2Tr/n. If n is even, then s=r-l and the coefficients are stored in the
sequence

A
o

, Ar ... , A
n/2 , B

1
, B

2
, ... , B

(n_ 2)/2
.

If n is odd, r=s and the coefficients are stored in the sequence

A
Q>

Av ... ,
A

(n_ 1)/2 '
B
i>

B
2 ' •••

'
B
(n-l)/2

-

If NRMAX exceeds 1000, only the first 1000 coefficients will be stored. The integer (n)

must be greater than 2 and must not exceed NRMAX. If (n) is less than NRMAX, only the first
(n) values of y are used.

For the 12 values of y in column 1 shown below, the instruction

HARMONIC analysis of column 1 for 12 points, put coefficients in col 2

will put seven coefficients, A's, in rows one through seven of column 2 and five
coefficients, B's, in rows eight through twelve of column 2 as follows:

y A and B coefficients

Row/Column i 2

1 9.3 9.2166666
2 15.0 -6.9027767
3 17.4 3.45
4 23.0 3.3

5 37.0 -.61666666
6 31.0 .60277674
7 15.3 .24999998
8 4.0 21.089591
9 -8.0 -2.8001488

10 -13.2 1.9666667
11 -14.2 1.068098
12 -6.0 -1.0229243

The above example is from Scarborough, J. B. , "Numerical Mathematical Analysis", Oxford
University Press, 1950, Cliapter XVII.

INTERPOLATE x in (C) y in (C) , length (n) values (v) in (C)
,
pts (p) ,

put in (C)

INTERPOLATE provides (p) -point Lagrangian interpolation for tabulated values of y = f(x)

in the two columns designated by the 1st and 2nd .
arguments . The length of the original

table is designated by the 3rd argument, (n) . Values of the independent variable x, in the

column designated by the 1st ' argument , must be in either ascending or descending order, but
need not be uniformly spaced. The 4th argument indicates the number of values in the column
designated by the 5th argument which are to be interpolated. The (v) interpolated values of

y are put in the column designated by the 7th (last) argument. Extrapolation will be done
for values outside the table, but the following informative diagnostic will be. given:

* EXTRAPOLATION DONE FOR MORE THAN ONE DELTA

If (p) is greater than (n)
, p is set equal to n and the following informative diagnostic

is given:

* ORDER OF INTERPOLATION EQUALS LIST SIZE

176



Mien the value of (p) is very large, there nay not be enough room to do the amount of
interpolation requested. This will happen if (p

2 +3p+v) exceeds the number of locations in
the worksheet-, 12,500 (for NBS computer). The value of p is reset to the largest value
possible and the following informative diagnostic is given:

* ORDER OF INTERP WAS RESET TO (n) DUE TO SIZE OF SCRATCH AREA

If columns 1, 2 and 3 contain the following values:

Columns 12 3

0.0 0.0 .25

.15 .14943813 .35

.30 .29552020

.45 .43496553

.60 .56464246

then the instruction

INTERPOLATE x in col 1 y in col 2 length 5 for 2 values in col 3 4 pts. put in 4

will put the values .24740159 and .34289405 in column 4.

MAXMIN x in (C) y in (C) put max x. in (C) max y in (C) min x in (C) min y in (C)

MAXMIN finds all the maxima and minima of a function (y = f (x)) defined by its tabulated
values. The validity depends on the adequacy of the interval of tabulation and monotonic
arrangement of x for a single valued function. Each extreme value in a sequence of y values
is identified and a parabola, y = ax 2 +bx+c, is fitted through the extreme point and one on
each side. The maxima and minima are determined by setting the derivative equal to zero to

obtain x = -b/2a. The stored results may be used to determine an envelope for the y values.

If the y values are monotonic, the following fatal error message is printed:

* MAXMIN HAS FOUND NO EXTREMA

If an apparent extremum is found where the x values are identical, the extremum is

ignored and the following informative diagnostic is given:

* MAXMIN HAS FOUND AND IGNORED A TRIAD OF X'S WITH AT LEAST TWO IDENTICAL VALUES

Assume column 10 contains the values of x in degrees -10, 0, 10, ... , 370 and column 11

contains the corresponding values of y = cos(x), then the instruction

MAXMIN x in col 10 y in col 11, put max x in 12 y in 13, put min x in 14 y in 15

finds two maxima whose coordinates are put in rows 1 and 2 of columns 12 and 13 and one
minimum whose coordinates are put in row 1 of columns 14 and 15 as follows:

max x max y mm x mm y

Row/Column 12 13 14 IS

1 3.8314035-08 1.0 180.0 -1.0

2 360.0 1.0000002

The command EXTREMA is a synonym for MAXMIN.

177



SOLVE lin eqs with coeffs in (R) , (C) size (r)x(c) consts in (C)
,
put sol in (C)

SOLVE provides the solution of a set of simultaneous linear equations, Ax = y, where A
is a square matrix of coefficients defined by the first four arguments, y is a vector of
constants and x is the solution vector. See sections 7 and 8 for the method of defining an
array or matrix. The 3rd and 4th arguments should be equal.

If a solution is obtained and the list of commands is printed at the end of a set of
OMNITAB instructions, a smallest error bound will be given below the command SOLVE in the

following form:

++
. .

. +SMALLEST ERROR BOUND ON INVERTED MATRIX IS + . .
.+

For a complete description of the meaning of the error bound, see section 8.5.

If r^c, the following informative diagnostic will be given:

* NO. OF ROWS NOT = TO COLS. MATRIX USED IS LARGEST SQUARE

Furthermore, if r and c are inadvertently too large, the following fatal error message is

given:

*** DEFINED MATRIX OVERFLOWS WORKSHEET

In order to solve a set of equations a large amount of scratch area is needed. If

2(r+2) is greater than the worksheet area, the following fatal error is given:

*** INSUFFICIENT SCRATCH AREA

Finally, if the matrix of coefficients, A, is singular, the following fatal error is

given:

*** MATRIX IS (NEARLY) SINGULAR

A, and the vector of constant, y, of a set of 10If the matrix of coefficients,
simultaneous linear equations is:

2-100000000•12-100000000-12-100000000-12-100000
000-12-100000000-12-100000000-12-100
000000-12-100000000-12-100000000-12

0.5

1.0

l.S
2.0

2.5
3.0
3.5
4.0
4.5
5.0

Then, the instruction

SOLVE eqs. with coeff matrix A in 1,5 size 10x10, y in col 1, put solution in col 2

will put the solution (x vector) in column 2.

178



5.5 Integration.

GAUSS QUADRATURE

Column 2

5.4545431
10.090905
13.090903
14.636356
14.909083
14.090901
12.363629
9.9090850
6.9090868
3.5454524

GAUSS QUADRATURE with (K) points, from (K) to (K)
,
put x in (C) , weights in (C)

GAUSS QUADRATURE generates the (n) abscissas,
coefficients, w., for the Gaussian quadrature formula

and the corresponding weight

/f(x)dx = l
n

.w.f(x.),

where n is the number of points specified by the first argument in the instruction. The
region of integration is divided into n/4 intervals. In each of the intervals the 4-point
Gaussian quadrature abscissas and weight coefficients are computed. The abscissas are put
in the column specified by the 4th argument and the weight coefficients are put in the

column specified by the 5th (last) argument. The limits of integration (a and b) are

defined by the 2nd and 3rd arguments of the instruction. (The 1st, 2nd and 3rd arguments
may be integers.)

The value of (n) must be greater than zero, some multiple of 4 and less than the current
number of rows in the worksheet (normally, 201).

If the value of NRMAX, before execution of this instruction, is less than n, NRMAX will

be set equal to n. Otherwise, NRMAX will remain unchanged. The instruction

GAUSS QUADRATURE using 8 pts from a = 0.0 to b = 1.0, put x in col 4 wts in col 5

would put the following results in the worksheet:

Row/Column 4 5

1 .034715922 .086963711

2 .16500474 .16303629

3 .33499526 .16303629

4 .46528408 .086963711

5 .53471592 .086963711

6 .66500474 .16303629

7 .83499526 .16303629

8 .96528408 .086963711

179



6. REPEAT MODE .

A discussion of how to use instructions repeatedly (in the repeat mode) was given in

section B2. This section gives specific details on the use of individual instructions. The
reader should refer to section B2 for the general discussion and further details.

Instructions in sections 6.1 and 6.2 use the argument (N) , where (N) is an instruction
number. See section B2.1. These are the only instructions in PART C which use this type of
argument

.

6.1 Repeated Execution .

BEGIN, FINISH, PERFORM

The PERFORM instruction executes numbered instructions which have been previously stored
for later use. There are three forms. of the instruction having 3, 2 and 1 arguments,
respectively. The commands EXECUTE and REPEAT are commonly used synonyms for PERFORM.

Instructions may be stored for later use by numbering them, as described in section
B2.1. An alternative (often less desirable) method for storing instructions is by the use
of the BEGIN and FINISH commands which provide automatic numbering of the instructions
between them. BEGIN and FINISH must not be numbered (stored), but a PERFORM instruction can
be stored for later use.

The instructions which follow are stored for later use until a FINISH instruction is

encountered. Each instruction is given a unique number, starting with 1 and continuing in

steps of 1 until the FINISH instruction is found. The FINISH instruction is not stored.

The instruction numbers are automatically printed in the LIST OF COMMANDS, DATA, AND
DIAGNOSTICS on the left of the stored instructions.

/ 7
I BEGIN storing instructions, but start numbering with number (N) /

/ /

Similar to above instruction; except the numbering of instructions, which follow, begins
with the number (N) rather than one. Numbering of instructions continues in steps of one
until a FINISH instruction is encountered. In this instruction (only), the instruction
number (N) must be an integer, without a decimal point. The integer must be greater than
zero and less than 1000. Warning, if the instruction number is written with a decimal
point, it will not only create a fatal error here, but also will be indicated in some

subsequent instructions. For example, when a reference is made to any of the stored
instructions by another instruction (such as PERFORM or RESTORE) , a fatal error will be

indicated each time because the referenced instruction cannot be found.

Instructs OMNITAB to terminate the storing and automatic numbering of instructions
initiated by a BEGIN instruction. The FINISH instruction does not cause the stored
instructions to be executed. This happens only when PERFORM is executed.

180



PERFORM instructions numbered (N) through (N) , (t) times

Causes the execution of all instructions which have instruction numbers between the
number designated by the first argument and the number designated by the second argument
inclusive. The group of instructions is executed (t) times (unless countermanded by one of
the branching instructions in sections 6.3 and 6.4). Prior to the use of a PERFORM
instruction, there must be stored instructions with numbers corresponding to the first two
arguments of the PERFORM instruction; otherwise a fatal error will occur. The 1st argument
must be less than or equal to the 2nd argument.

/

/ PERFORM instructions numbered (N) through (N) once

/

/

/

/

If the third argument is missing, it is assumed to be equal to one.

/

/ PERFORM instruction numbered (N) once

/

/

/

/

If the second and third arguments are missing, the second argument is assumed to be
equal to the first and the third argument is assumed to be equal to one.

6.2 Incrementing Instructions .

INCREMENT, RESTORE

The two instructions described in this section are used to change the arguments of a
stored (numbered) instruction from one repeat 'of a set of instructions to another.

Upon execution of an INCREMENT instruction, the arguments of the instruction numbered
(N) are modified as indicated. The INCREMENT instruction always has exactly one more
argument than the instruction which is being incremented. The arguments (after (N)) must be
of the same kind as the corresponding arguments in the instruction (N) . The 2nd argument of
the INCREMENT instruction is added to the 1st argument of the indicated stored instruction,
the 3rd argument of the INCREMENT instruction is added to the 2nd argument of the stored
instruction, and so forth. If the instruction

41/ DEFINE the value 1.0 into column 54

is to be incremented, the INCREMENT instruction must have 3 (1+2) arguments. The second
argument, corresponding to 1.0, must be written with a decimal point and the third argument,
corresponding to 54, must be written without a decimal point. Hence, the instruction might
be

42/ INCREMENT instruction 41 by 1.0 and -1

After the execution of instruction 42, instruction 41 will, in effect, read DEFINE 2.0 into
column 53.

An INCREMENT instruction can not be used to increment itself, i.e., the argument (N)

must not be the same as the number of the INCREMENT instruction. See section B2.3 for
further details.

181



The INCREMENT instruction does not have to be numbered (stored) . The instructions

1/ DEFINE the number 1.0 into column 1

2/ INCREMENT instr 1 by 1.0 and
PERFORM instrs 1 thru 2, 9 times
INCREMENT instr 1 by 8.6 and
PERFORM instrs 1 thru 2, 9 times

would put 9.0 into column 1 after the execution of the first PERFORM instruction and would
put 26.6 into column 1 after the execution of the second PERFORM instruction.

When the instruction is executed, the arguments of the instruction numbered (N) will be
replaced by the specified arguments. The number of arguments after (N) must be exactly the
same as the number of arguments in the instruction numbered (N) . Also , the arguments in the
RESTORE instruction (after (N)) must be of the same kind as the corresponding arguments in
the instruction (N) . A RESTORE instruction does not have to be numbered.

6.3 Branching, Three Arguments .

COMPARE, IFEQ, IFNE

The instructions described in sections 6.3 and 6.4 may only be used as stored
instructions in the repeat mode. They provide the capability of branching within a group of
stored, instructions by (1) terminating the execution of a subset of stored instructions or
by (2) terminating the execution of a PERFORM instruction. The instructions in this section
all have three arguments and use either a relative tolerance or an absolute tolerance
specified by the last argument. The instructions in section 6.4 are similar but have only
two arguments and do not use a tolerance.

Each instruction makes a comparison between two numbers or sets of numbers specified by
the first two arguments, which may be either a constant or a column number. If the
tolerance is not satisfied, or the condition is false, for any pair of values, no action is

taken and, in effect, the instruction is ignored. If the designated tolerance is satisfied
for all pairs of values, the action taken depends upon whether the instruction is (a) the

last instruction in a subset of stored instructions, or (b) is not the last instruction in
the subset.

If the tolerance is satisfied, or the condition is true, and the branching instruction
is the last in the subset of stored instructions, the execution of the PERFORM instruction
is terminated. For example, in the instructions

21/ DEFINE the value 1.0 into column 1

22/ INCREMENT instr 21 by 1.0 and
23/ IFEQ 4.0 to column 1 within 0.5

24/ PERFORM instrs 21 thru 23, 7 times

the IFEQ instruction is the last in the subset of instructions and the PERFORM instruction
will be terminated when every number in column 1 equals 4.0. In this case, the execution of
instructions 21 through 23 will be terminated after the fourth time and the number 4.0 will
be in column 1. The IFEQ instruction does not have to be the last stored instruction in the
entire set, but only the last in the subset specified by the PERFORM instruction which
executes the IFEQ instruction. In other words, the second argument of the PERFORM
instruction, 23, must be the same as the instruction number, 23, of the IFEQ instruction.

182



If a tolerance is satisfied and the branching instruction is not the last instruction in
the subset of stored instructions, the remaining instructions after the branching
instruction are hot executed. In the execution of the instructions

31/ DEFINE the value 1.0 into column 1

32/ INCREMENT instr 31 by 1.0 and
33/ IFEQ 3.0 to column 1 within 0.5
34/ ADD the number 10.0 to col 1 and put in col 11

35/ INCREMENT 34 by 0.0 and 1

PERFORM instrs 31 thru 35, 5 times

the number 5.0 will be put into column 1 and the numbers 11.0, 12.0, 14.0 and 15.0 into
columns 11 through 14. In the comparison of 3.0 with column 1, in instruction 33, the

equality condition is true after the 3rd execution of instruction 31 and instructions 34 and
35 are not executed

-
this time only. The next two times that instruction 33 is executed the

condition is not true and instructions 34 and 35 are executed.

COMPARE (E) to (E) using relative tolerance (E)

This is the only branching instruction which uses a relative tolerance. If the first
argument is a constant, let ARG1 equal the constant"! If the first argument is a column
number, let ARG1 equal the number in any row of the column. Define ARG2 and ARG3 in a

similar manner. For ARG1 f and ARG2 f 0, the relative tolerance is satisfied if

|

(ARG1-ARG2)/ARG2| < |ARG3|.

If ARG1=0 or'ARG2=0, the tolerance is satisfied if

|ARG1-ARG2| < |ARG3|.

Also, if ARG1=0 or ARG2=0, the following arithmetic fault message is given:

** ONE OF THE VALUES COMPARED IS ZERO, ABSOLUTE TOLERANCE WAS USED (n) TIMES

For the numbers

Column 56 Column 57 Column 58

1.0 5.0 0.9

5.0 1.0 0.5
-2.0 0.0 1.0

the instruction

COMPARE column 56 with 57 using relative tolerance in column 58

would compare the numbers 0.8, 4.0 and 2.0 with 0.9, 0.5 and 1.0, respectively. The

tolerance is met in row 1, but not in rows 2 or 3. Hence, the tolerance is not satisfied.

The specified tolerance is satisfied, if, and only if, the absolute value of the

difference between all the numbers designated by the first two arguments is equal to the

number (s) designated by the third argument. For the numbers

183



Column 26 Column 27 Column 28

1.6 2.3 0.8
1.5 2.7 0.6

-5.3 1.8 7.9

the absolute tolerance in column 28 is met in rows 1 and 3, but not in row 2. Since the
tolerance is not satisfied in all three rows, the tolerance in the instruction

IFEQ column 26 to column 27 within absolute tolerance in column 28

is not satisfied.

IFNE (E) to (E) within absolute tolerance (E)

This instruction operates exactly as the IFEQ instruction above with "not equal"
replacing equal.

6.4 Branching, Two Arguments .

IFEQ, IFGE, IFGT, IFLE, IFLT, IFNE

These six instructions each have exactly two arguments. None of the instructions uses a
tolerance, but in all other respects they operate like the IFEQ and IFNE instructions which
are described in section 6.3. In fact, these two instructions have optional forms which are
described here. The branching instructions with two arguments do not use a tolerance.
Instead, the specified condition is either true or"Talse.

I 7
I IFEQ (E) to (E) /

/ /

The condition is true, if, and only if, the number (s) specified by the first argument is
(are all ) equal to the number (s) specified by the second argument.

IFGE (E) to (E)

The condition is true, if, and only if, the number(s) specified by the first argument is
(are all) greater than or equal to the number(s) specified by the second argument.

IFGT (E) to (E)

The condition is true, if, and only if, the number (s) specified by the first argument is

(are all ) greater than the number (s) specified by the second argument.

IFLE (E) to (E)

The condition is true, if, and only if, the number(s) specified by the first argument is
(are all) less than or equal to the number(s) specified by the second argument.

184



IFLT (E) to [E)

The condition is true, if, and only if, the number(s) specified by the first argument is

(are all) less than the number (s) specified by the second argument.

/
/ IFNE (E) to (E)

7

/

/
/

The condition is true, if, and only if, the number(s) specified by the first argument is

[are all) not equal to the number(s) specified by the second argument.

185



ARRAY OPERATIONS.

In. general, OMNITAB instructions perform operations on columns of data (not necessarily
consecutive), working from the first row down to row NRMAX. In this section, instructions
are described which perform operations on a rectangular (or square) array (of consecutive
rows and columns), which may be located anywhere in the worksheet, including that portion
below NRMAX. None of the instructions here have any effect on the value of NRMAX nor are
they influenced in any way by NRMAX. Each command begins with the letter A, standing for
array. The array operation instructions described herein can be used very effectively for
data manipulation.

Four arguments designate an array in the worksheet:

(R) = the row number of the value in the upper left hand corner of the array
(C) = the column number of the value in the upper left hand corner of the array
(r) = the number of rows in the array
(c) = the number of columns in the array

The first four arguments (all integers) of each instruction in this section are always of
the above form and designate an array. Some of the instructions have additional arguments
which may designate a second or third array.

The descriptions of the instructions in sections 7.1 and 7.2 include an example based
upon the following data in the worksheet:

Row/Column 11 12 13 Row/Column 26 27 28

2.0

6.0
0.0
4.0

8.0
-2.0

14

15

2.0

3.0
5.0
2.0

2.0
4.0

and the numbers 1.0, 2.0, 3.0, 4.0 and 5.0 in column 41.

Care should be used with instructions for array operations to avoid designating an array
which is partially outside the worksheet. In most instructions, if the arguments specify an
array partially outside the worksheet, the following fatal error message appears:

*** DEFINED MATRIX OVERFLOWS WORKSHEET

7.1 Arithmetic.

AADD, ADIVIDE, AMULTIPLY, ARAISE, ASUBTRACT

Each of the instructions in this section has three forms having 10, 8 and 7 arguments
respectively. All involve three arrays. The third array is designated simply by (R)

, (C)

without using the size (r)x(c), since the size is always the same as the size of the first
array. In the first form (10 arguments) the second array is completely designated by the
four arguments (R),(C) and (r)x(c), even though the size of this array must be the same as
the size of the first array. The second form (8 arguments) is the same as the first except
the size (r)x(c) of the second array is omitted from the instruction. The third form (7

arguments) is used when the second array is a constant (scalar, with r=c=l) or column
(vector, with R=l, r=(r) of first array and c=l).

The ADIVIDE, AMULTIPLY and ARAISE instructions in this section can produce the same type
of arithmetic faults as the analagous instructions of section 2.1. See section 2.1 and
section B3.3 for further details.

186



AADD the array (R),(C) size (r)x(c) to array (R),(C) size (r)x(c) put in (R) , (C)

Two arrays with the same dimensions are added together element by element. The
instruction

AADD the array in 7,11 size 2x3 to array in 14,26 size 2x3 put in 4,32

would give the following result:

Row/Column 32. 33 34

4 4.0 5.0 10.0

5^ 9.0 2.0 2.0

I

'

/
/ AADD the array in CR),(C) size (r)x(c) to arrav (R)

, (C) and put in (R)
, (C) /

/
.

/

Same as above; except the row and column size of the second array are ommitted. The
instruction (equivalent to the one above)

AADD the array in 7,11 of size 2x3 to the array in 14,26 and put in 4,32

would give the following result:

Row/Column 32 33 34

4 4.0 5.0 10.0

_5 9.0 2.0 2.0

I 7
I AADD the array in (R)

,
(C) of size [r) , (c) to (E) and put array in (R) , CC) /

/ /

Allows the addition of either a column or a constant to an array. When a column is
added to an array, it is added to each column of the array. The first (r) rows of the
column are used regardless of the value of NRMAX, The instruction

AADD the array in 7,11 of size 2x3 to column 41 and put in 4,32

would give the following result:

Row/Column 32 33 34

4 3.0 1.0 9.0

_5 8.0 6.0 0.0

When a constant is added to an array, it is added to each element in the array. The
instruction

AADD the array in 7,11 of size 2x3 to -1.3 and put in 4,32

would give the following result:

187



Row/Column 12_ 33 34

4 0.7 -1.3 6.7
5 4.7 2.7 -3.3

ADIVIDE array (R)
, (C) size Cr)x(c) by array (R)

, (C) size (r)x(c) put in (R)
, (C)

The first array is divided, element by element, by the second array and stored as

indicated. The command ADIV is an acceptable abbreviation of ADIVIDE in all three forms of
the instruction. The instruction

ADIVIDE the array in 7,11 size 2x3 by the array in 14,26 size 2x3 and put in 4,32

would give the following result:

Row/Column _32 33 34

4 1.0 0.0 4.0

5 2.0 -2.0 -0.5

I
' ~ '

" 7
I ADIVIDE the array in (R)

,
(C) size (r)x(c) by the array (R),(C) put in (R),[C) /

/ /

Same as above; except the row and column size of the second array are omitted.

/ '

~ " ' " ~~ 7
I ADIVIDE the array in (R)

, (C) of size (r)x(c) by (E) and put in (R)
,
(C) /

/ _ ,

/

Allows for the division of an array by either a column or a constant. When an array is

divided by a column, each column of the array is divided by that column. The first (r) rows
of the designated column are used regardless of the value of NRMAX. The instruction

ADIVIDE the array in 7,11 of size 2x3 by column 41 and put in 4,32

would give the following result:

Row/Column 32 33 34

4 2.0 0.0 8.0

I 3.0 2,0 -1.0

When an array is divided by a constant, each number in the array is divided by the constant.
The instruction

ADIVIDE the array in 7,11 of size 2x3 by 2.0 and put in 4,32

would give the following result:

Row/Column 32 33 34

4 1.0 0.0 4.0
"5" 3.0 2.0 -1.0



MULTIPLY array (R) ,
(C) size (r)x(c) by (R)

,
(C) size (r)x(c) put in (R)

,
(C)

Element by element multiplication is performed on two arrays. The command AMULT is an

acceptable abbreviation for MULTIPLY in all three forms of the instruction. The

instruction

AMULTIPLY the array in7,ll size 2x3 by the array in 14,26 size 2x3 and put in 4,32

would give the following result:

Row/Column 32 33 34

4 4.0 0.0 16.0

5 18.0 -8.0 -8.0

/ 7
I AMULTIPLY array in (R) , (C) size (r)x(c) by array in (R) ,

(C) put in (R) , (C) /

/ /

Same as above; except the row and column size of the second array are omitted.

/
" 7

I AMULTIPLY the array in (R) , (C) of size (r)x(c) by (E) and put array in (R)
, (C) /

/
,

/

Allows the multiplication of an array by either a column or a constant. When an array

is multiplied by a column, each column of the array is multiplied by that column, element by

element. The first (r) rows of the designated column are used regardless of the value of

NRMAX. The instruction

AMULTIPLY the array in 7,11 of size 2x3 by column 41 'and put in 4,32

would give the following result:

Row/Column 32 35 34

4 2.0 0.0 8.0

5_ 12.0 8.0 -4.0

When an array is multiplied by a constant, each number in the array is multiplied by that

constant. The instruction

AMULTIPLY the array in 7,11 of size 2x3 by 2.0 and put in 4,32

would give the following result:

Row/Column 32_ 33_ 34

4 4.0 0.0 16.0

5 12.0 8.0 -4.0

ARAISE array (R) , (C) size (r)x(c) to array (R) , (C) size (r)x(c) put in (R),(C)

189



The first array is raised, element by element, to the power of the second array. The
instruction

ARAISE the array in 7,11 size 2x3 to array in 14,26 size 2x3 and put in 4,32

would give the following result:

Row/Column 32 33 34

4 4.0 0.0 64.0
5 216.0 .0625 16.0

/ 7
I ARAISE the array in (R)

,
(C) size (r)x(c) to array (R)

,
(C) put array in (R),(C) /

/ /

Same as above; except the row and column size of the second array are omitted.

/ 7
I ARAISE the array in (R)

,
(C) of size (r)x(c) to (E) and put array in (R),(C) /

/ /

Allows the first array to be raised to a column or a constant. When an array is raised
to a column, each column of the array is raised to the column, row by row. The first (r)

rows of the column are used regardless of the value of NRMAX. The instruction

ARAISE the array in 7,11 of size 2x3 to column 41 and put in 4,32

would give the following result:

Row/Column 32_ 33 34

4 2.0 0.0 8.0

\ 36.0 16.0 4.0

When an array is raised to a constant, each number in the array is raised to the constant.
The instruction

ARAISE the array in 7,11 of size 2x3 to 2.0 and put in 4,32

would give the following result:

Row/Column 32 33 34

4 4.0 0.0 64.0
5" 36.0 16.0 4.0

ASUBTRACT array (R)
,
(C) size (r)x(c) minus (R)

, (C) size (r)x(c) put in (R),(C)

The second array is subtracted element by element from the first array. Note the
difference in the order of subtraction from that in a SUBTRACT instruction (see section
2.1). The command ASUB is an acceptable abbreviation for ASUBTRACT in all three forms of
the instruction. The instruction

ASUBTRACT the array in 7,11 size 2x3 minus array in 14,26 size 2x3 put in 4,32

190



would give the following result:

Row/Column 32 33 34

4 0.0 -5.0 6.0
3.0 6.0 -6.0

I
'

'

1
I ASUBTRACT array (R)

, (Q of size (r)x(c) minus the array (R) , (C) put in (R)
, (C) /

L _. .

/

Same as above; except the row and column size of the second array are omitted.

/
'

:

7
/ ASUBTRACT the array in (R)

, (C) of size (r)x(c) minus (E) and put array in (R) , (C) /

/ /

Allows the subtraction of either a column or a constant from an array. When a column is
subtracted from an array, it is subtracted from each column of the array. The first (r)

rows of the column are used regardless of the value of NRMAX, The instruction

ASUBTRACT the array in 7,11 of size 2x3 minus col 41 and put in 4,32

would give the following result:

Row/Column 32 11 34

4 1.0 -1.0 7.0

5 4.0 2.0 -4.0

When a constant is subtracted from an array, it is subtracted from each number in the array.
The instruction

ASUBTRACT the array in 7,11 of size 2x3 minus 2.0 and put in 4,32

would give the following result:

Row/Column 32 33 34

4 0.0 -2.0 6.0

][ 4.0 2.0 -4.0

7.2 Data Manipulation .

ADEFINE, AERASE, AMOVE, ATRANSPOSE

ADEFINE the array in (R)
,
(C) of size [r)x(c) to be equal to (K)

Every element in the designated array is set equal to the constant (K) , The instruction

ADEFINE the array in 4,32 of size 2x3 to be equal to 7.5

would give the following result:

191



Row/Column 32 33_ 34

4 7.5 7.5 7.5
5 7.5 7.5 7.5

AERASE the array in (R),(C) of size (r)x(c)

Every entry in the array is set equal to zero. AZERO is a synonym for AERASE.
Actually, an ADEFINE instruction with K = 0.0 performs the same operation as the AERASE
instruction which has the same first four arguments. The instruction

AERASE the array in 4,32 of size 2x3

would give the following result:

Row/Column 32 33 34

4 0.0 0.0 0.0

5 0.0 0.0 0.0

AMOVE the array in (R),(C) of size (r)x(c) to (R)
,
(C)

Moves an array from one part of the worksheet to another. The second named array may
overlap the first named array. The command MOVE, described in section 3.2, is synonymous
with the command AMOVE. The instruction

MOVE the array in 7,11 of size 2x3 to the array in 4,32

would give the following result:

Row/Column 32 33 34

4 2.0 0.0 8.0

5 6.0 4.0 -2.0

ATRANSPOSE the array in (R)
, (C) of size (r)x(c) into (R)

,
(C)

Rotates an array 90 degrees so that the first row of the array becomes the first column
of the new array, the second row becomes the second column and so forth. Hence, if the first

array has (m) rows and (n) columns, the transpose will have (n) rows and (m) columns. If

c=l, the instruction will transpose a column into a row, whereas if r=l (and the 2nd last

argument is R=l) , the instruction will transpose a row into a column. The instruction

ATRANSPOSE the array in 7,11 size 2x3 into 4,32

would give the following result:

192



Row/Column 32 33

2.0
0.0

8.0

6.0
4.0
-2.0

7.3 Summarization .

AAVERAGE, ACOALESCE

There are two forms of each instruction,
for a particular value (K) in an array. If

informative diagnostic is given

The second form of each instruction searches
the number is not found, the following

* VALUE REQUESTED IN SHORTEN, ACOALESCE OR AAVERAGE NOT FOUND.

The two instructions are similar. The instruction ACOALESCE computes certain sums as
described, whereas the instruction AAVERAGE computes the corresponding averages. The
description of ACOALESCE should be read before turning to the description of AAVERAGE.
Examples in this section are based on the following array in the worksheet:

//Column 11 12 13 14

21 1.0 0.0 1.0 2.0
22 0.0 2.0 1.0 3.0
23 1.0 2.0 0.0 1.0
24" 0.0 1.0 2.0 0.0
25 2.0 1.0 3.0 1.0

Similar to ACOALESCE below; except averages are computed instead of sums,
instruction

The

AAVERAGE on first col of array in 21,11 size 5x4 and put in 41,31

would yield

Row/ Column

41

4T
4T

31

1.0
0.0
2.0

32

1.0
1.5
1.0

33

0.5
1.5
3.0

34

1.5
1.5
1.0

Column 31 is the same as in the example of ACOALESCE below. The number 0.5 in row 41 of
column 33 is the average of 1.0 and 0.0 in rows of 21 and 23 of column 13. The other
numbers were obtained in a similar manner.

Remark .

If the first column of the array contains positive integers only and each integer from 1

to the largest appears in at least one row, then AAVERAGE, with R=l, computes the same
averages as the instruction ONEWAY, described in section 4.3. For the following data in the
worksheet

:

193



w/Column 11 12 13 14

1 l 4 9

2 2 9 8 2

3 1 4 3 7

J 2 3 7 6

5 3 2 7 5

F 2 3 9 7

7 4 4 3

7 3 4 6 1

S 5 2 2

iff 4 7 4 8

the instruction

AAVERAGE 1,11 size 10x4 put in 1,21

puts the same results in columns 21, 22, 23 and 24 as the three instructions

SONEWAY 12, 11 put in 21, 20, 22, 20

SONEWAY 13, 11 put in 21, 20, 23, 20

SONEWAY 14, 11 put in 21, 20, 24, 20

namely

^/Column 21 22 23 24

1 1.0 2.0 3.5 8.0
1 2.0 5.0 8.0 5.0

3 3.0 3.0 6.5 3.0

1 4.0 5.5 2.0 5.5

7 5.0 2.0 0.0 2.0

I 7
/ AAVERAGE on (T) in first col of array (R),(C) size (r)x(c) put row in (R),(C) /

/ /

Bears the same relation to the form above that the second form of ACOALESCE bears to the
first form. The instruction

AAVERAGE on 1.0 in first col of array in 21,11 size 5x4 and put row in 41,31

would put the numbers 1.0, 1.0, 0.5 and 1.5 into row 41 of columns 31 to 34.

ACOALESCE on first col of array (R),(C) size (Y)x(c) put array in (R),(C)

First, the instruction finds the m different values in the first column of the first

array and puts these values into the first column of the second array. For any set of two
or more numbers in the first column which are equal, only the first number in each set is

put into the second array. Hence, the number of rows in the second array is m, not r.

Let a, b, c, be the numbers in the first row of the second array. Then, b is the
sum of all the numbers in the rows of column 2 which contain the number a in the same rows
of column 1; c is the sum of all numbers in the rows of column 3 which have a in the same
row of column 1; and so on. The remaining rows are constructed in a similar way. The
instruction

ACOALESCE on first col of array in 21,11 size 5x4, put array in 41,31

194



would yield the results

Row/Column 31 32 33 34

41 1.0 2.0 1.0 3.0
TI 0.0 3.0 3.0 3.0
TS 2.0 1.0 3.0 1.0

Column 11 has three distinct numbers 1.0, 0.0 and 2.0. These numbers are put into rows 41,
42 and 43 of column 31. The number 1.0 in row 41 of column 31 appears in rows 21 and 23 of
column 11. Hence, the numbers 2.0, 1.0 and 3,0 in row 41 of columns 32 to 34 are the sum,
respectively, of: 0.0 and 2.0 in rows 21 and 23 of column 12; 1.0 and 0.0 in rows 21 and 23

of column 13; and 2.0 and 1.0 in rows 21 and 23 of column 14. The number 0.0 in row 42 of
column 31 appears in rows 22 and 24 of column 11. Hence, the numbers 3.0, 3.0 and 3.0 in
row 42 of columns 32 to 34 are the sum, respectively, of: 2.0 and 1.0 in rows 22 and 24 of
column 12; 1.0 and 2.0 in rows 22 and 24 of column 13; and 3.0 and 0.0 in rows 22 and 24 of
column 14. The numbers in row 43 were obtained in a similar way.

I
7

/ ACOALESCE on (K) in first col of array (R),(C) size (r)x(c) put row in (R),(C) /

/
,

/

Similar to above instruction. The second array has only 1 row and (c) columns. The
first column contains the constant (K) . Each other column contains the sum of all numbers
in the corresponding column of the first array in those rows which have the constant (K) in
the same row of column 1. The instruction

ACOALESCE on 1.0 in first col of array in 21,11 of size 5x4 put array in in 41,31

would put the numbers 1.0, 2.0, 1.0 and 3.0 into row 41 of columns 31 through 34. The
number 1.0, (K) , appears in rows 21 and 23 of the first array. Hence, 2.0 in column 32 is

the sum of 0.0 and 2.0 in rows 21 and 23 of column 12; 1.0 is the sum of 1.0 and 0.0 in rows
21 and 23 of column 13; and 3.0 is the sum of 2.0 and 1.0 in rows 21 and 23 of column 14.

7.4 Properties Of An Array .

APROPERTIES, SAPROPERTIES

There are six different forms of APROPERTIES. Each instruction automatically prints 18

different properties of the designated array. The six forms differ only in the amount of
information which is stored. The first form does not provide any storage. The remaining
forms provide storage of results as follows: (2) properties, (3) column averages, (4)

properties and column averages, (5) column averages and row averages, and (6) properties,
column averages and row averages.

An example of the APROPERTIES, using the sixth form, is given on page 197. The printing
of the properties shows the row in which the property is stored, the description and the
value of the property. The meaning of most of the descriptions should be clear, but a few
may require a word of explanation. The trace of an array [1) is the sum of the numbers in
the principal diagonal; that is the sum of the numbers in the diagonal starting with the
number in the upper left-hand corner and moving down and to the right. If the array is not
square, the number of values used in the sum is given in parentheses. Item 14, the sum of
squares about the mean, is the same as the (corrected) total sum of squares printed by the
instruction TWOWAY, described in section 4.4. Items 15 and 16 are the within sums of
squares and should not be confused with the between sums of squares printed by TWOWAY.

All forms of the instruction, except the first, have an additional form which has the
letter S at the beginning of the command. The letter S indicates that the automatic
printing of the properties is to be suppressed and only the requested results are stored.

195



These forms are listed at the end of this section, but they are not described. If an

attempt is made to put the letter S at the beginning of the command in the first form, the

instruction will be ignored and the following informative diagnostic will be given:

* COMMAND IGNORED - S BEFORE COMMAND NAME MEANINGLESS IF NO STORAGE REQUESTED

APROPERTIES of the array in (R) , (C) of size (r)x(c)

This form of the instruction prints the 18 properties of the specified array, but

provides no storage of results.

/ T
I APROPERTIES of the array in (R) , (C) of size (r)x(c) put in column (C) /•

/ /

The properties of the specified array are both printed and put in the first 18 rows of

the column designated by the last argument.

/ 7
I APROPERTIES of array in (R)

,
(C) size (r)x(c), put column ave's in (R),(C) /

/ ____/

The (c) column averages are put in the row designated by the last pair of arguments.

/ 7
I APROPERTIES of (R) , (C) size (r)x(c), put prop in (C) , col ave's in (R) , (C) /

/ /

Same as above form, but the properties are also stored in the worksheet. The properties

of the array are put in the first 18 rows of the column designated by the 5th argument and

the column averages are put in the row designated by the last two arguments.

/
7

/ APROPERTIES of (R) ,
(C) size (r)x(c), put col ave's in (R) , (C) , row ave's (R) , (C) /

/ /

The column averages are put in the roi\r indicated by the third pair of arguments and the

row averages are put in the column designated by the fourth (last) pair of arguments.

/ 7
/ APROPERTIES array (R)

,
(C) size (r)x(c), in (C) , ave's in (R)

,
(C) and (R)

,
(C) /

/ /

Same as above, but the properties are also stored in the worksheet. The properties of

the array are put in the first 18 rows of the designated column (5th argument) . The (c)

column averages are put in a row vector designated by the second last pair of arguments.

The (r) row averages are put in a column vector designated by the last pair of arguments

.

The example on page 197 uses this form of the instruction.

SAPROPERTIES of the array in (R)
, (C) of size (r)x(c) put in column (C)

/ -J
I SAPROPERTIES of array in (R) , (C) size (r)x(c), put column ave's in (R)

,
(C) /

/ /

196



OMNITAB 12/2/70 APROPERTIES EXAMPLE PAGE

GENERAL
PROPERTIES OF 4 X 5 ARRAY STARTING LOCATION ( 3, 7)

1 TRACE ( 4 VALUES USED) 0.000000
2 TRACE NO. 2 -1.000000+02

3 MAXIMUM ELEMENT 1.000000+01
4 MINIMUM ELEMENT -9.000000+00
5 MAXIMUM ELEMENT IN ABS VALUE 1.000000+01
6 MINIMUM ELEMENT IN ABS VALUE 0.000000
7 MIN NON-ZERO ELEM IN ABS VAL 1.000000+00

8 NUMBER OF POSITIVE ELEMENTS 10
9 NUMBER OF ZERO ELEMENTS 1

10 NUMBER OF NEGATIVE ELEMENTS 9

11 SUM OF TERMS 1.000000+01
12 AVERAGE 5.000000-01
13 SUM OF SQUARES 6.700000+02
14 SUM OF SQUARES ABOUT MEAN 6.650000+02
15 WITHIN ROWS SUM OF SQUARES 4.000000+01
16 -WITHIN COLS SUM OF SQUARES 6.250000+02
17 SUM OF ABSOLUTE VALUES 1.000000+02
18 AVERAGE OF ABSOLUTE VALUES 5.000000+00

-9.0000000
-4.0000000
1.0000000
6.0000000
-1.5000000

-8.0000000
-3.0000000
2.0000000
7.0000000
-.50000000

-7.0000000
-2.0000000
3.0000000
8.0000000
.50000000

-6.0000000
-1.0000000
4.0000000
9.0000000
1.5000000

-5.0000000
0.

5.0000000
10.000000
2.5000000

-7.0000000
-2.0000000
3.0000000
8.0000000
0.

OMNITAB 12/2/70 APROPERTIES EXAMPLE PAGE 2

LIST OF COMMANDS, DATA AND DIAGNOSTICS

READ DATA INTO COLUMNS 1, 2, 3, 4 AND 5

-9 -8 -7 -6 -5

-4 -3 -2 -1

12 3 4 5

6 7 8 9 10

AMOVE 1,1 4,5 TO 3,7
APROPERTIES OF ARRAY IN 3,7 4X5 PUT COL AVE' S IN 7,7 ROW AVE 'S IN 3,12
SPACE 2

APRINT ARRAY IN 3,7 OF SIZE 5X6

197



/ T
I SAPROPERTIES of (R) , (C) size (r)x(c), put prop in (C) , col ave's in (R)

, (C) /

/ I

I J
I SAPROPERTIES of (R) , (C) size (r)x(c), put col ave's in (R)

,
(C) , row ave's (R)

,
(C) /

/
:

i

i j
I SAPROPERTIES array (R) , (C) size (r)x(c), in (C) , ave's in (R) , (C) and (R) , (C) /

/ /

7.5 Printing .

APRINT, APRINT "L"

These two instructions are listed here for completeness, but they are described in
section 1.8.

APRINT the array in (R) , (C) of size (r)x(c)

APRINT "L" format, the array in (R)
, (C) of size (r)x(c)

7.6 Matrix Synonyms .

No knowledge of matrix algebra is required to use the instructions described above.
Although the ter.ns array and matrix are sometimes used interchangeably, they are often used
in different contexts in OMNITAB. In fact, some array instructions perform quite different
operations from the counterpart matrix instruction. An AMULTIPLY instruction simply
performs element by element multiplication, whereas the MULTIPLY instruction operates in
accordance with the rules of matrix algebra. Nevertheless, there are several array
operation instructions which are synonymous with a matrix operation instruction described in
section 8. Each matrix equivalent of an array instruction is listed below. (See section
B1.13 for a complete list of synonyms.)

Array Command (s )

AADD
ADEFINE
AERASE (AZERO)

AMOVE '

APRINT "L"
ASUBTRACT
ATRANSPOSE

Matrix Command (s)

MADD
MDEFINE
MERASE (MZERO)

MMOVE (also MOVE)
MPRINT "L"
MSUBTRACT
MTRANSPOSE

198



8. MATRIX OPERATIONS .

This section describes instructions which perform operations on matrices occupying any
location in the worksheet. All of the instructions operate independently of NRMAX;

particularly MDIAGONAL, MMATVEC, MVECMAT, and M (AD). Each command (except ^PROPERTIES)
begins with the letter M to denote a matrix operation. Except in MMATVEC, the first four
arguments always specify the beginning location of a matrix, (a row and column number) and
the size of the matrix (number of rows and columns in the matrix) . The beginning location
of a matrbc is the location of the number in the upper left-hand corner of the matrix.
Diagnostics are given if the specified matrix does not fit in the worksheet.

8.1 Defining Operations .

MDEFINE, MDIAGONAL, MERASE, MIDENTITY

These commands are used to define the elements of a matrix.

MDEFINE the matrix in (R)
,
(C) of size (r)x(c) to have all elements equal to (K)

All the (r)x(c) elements in the matrix beginning in row (R) of column (C) of the

worksheet are set equal to the constant (K) . The constant (K) must be written with a

decimal point. This instruction produces the same results as MERASE (or MZERO) , below, if

the constant (K) = 0.0. The instruction

MDEFINE the matrix in row 6 of col 3 size 2x3 to be 12.245

would give the following result:

Row/Column 3_ 4_ 5_

6 12.245 12.245 12.245

7 12.245 12.245 12.245

MDIAGONAL the matrix in (R)
,
(C) of size (r)x(c) equal to (E) on the diagonal

The main diagonal elements of the (r)x(c) matrix beginning in row (R) of column (C) are

set equal to the specified constant or equal to the 1st (r) numbers (independent of NRMAX)

in the column specified by the fifth argument. Only the main diagonal elements are changed.

The matrix must be square, i.e., the 3rd and 4th arguments must be equal. The instruction

MDIAGONAL matrix in row 6 col 3 size 3x3 equal to 2.2 on the diagonal

would give the following results:

Row/Column 3 4_ 5_

6 2.2

7 2.2

F 2.2

199



MERASE the matrix in (R)
, (C) of size (r)x (c)

Every number in the (r)x(c) matrix beginning in row (R) of column (C) is set equal to

zero. MZERO is a synonym for MERASE. The instruction

MERASE the matrix in row 6 col 3 of size 2x3

would give the following result:

Row/Column 111
6 0.0 0.0 0.0

7 0.0 0.0 0.0

MIDENTITY in (R)
, (C) of size (r)x(c)

All the non-diagonal elements of the specified matrix in row (R) of column (C) of size

(r)x(c) are set equal to zero. The main diagonal elements are set equal to one. If the

size (r)x(c) does not specify a square matrix, the main diagonal elements of the square
matrix, whose length is the smaller of (r) and (c) , are set equal to one. The instruction

MIDENTITY matrix in row 6 col 3 of size 2x3

would give the following result:

Row/Column 3 4_ 5_

6 1.0 0.0 0.0

7 0.0 1.0 0.0

8.2 Moving Operations .

MMATVEC, MMOVE, MTRANSPOSE, MVECDIAGONAL, MVECMAT

These commands are very useful for data manipulation.

MMATVEC make by rows column (C) into the matrix in (R) ,
(C) of size (r)x(c)

The column (vector), specified by the 1st argument, is transformed into the matrix
specified by the last four arguments. The first (c) numbers in column (C) become the 1st

row of the matrix, the next (c) numbers become the 2nd row of the matrix, and so forth. The

first (r)x(c) numbers in column (C) are used to construct the matrix (regardless of the

value of NRMAX) . Assume the numbers one through six are in column 21 , then the instruction

MMATVEC make by rows col 21 into a matrix in location 6,3 size 2x3

would give the following result:

Row/Column 111
6 1.0 2.0 3.0

7 4.0 5.0 6.0

200



I T
I MMATVEC col vector in (R)

,
(C) into matrix in (R) , (C) size (r)x(c) /

/ /

Same as the above instruction; except the column vector starts in row (R) , rather than

row 1, of column (C). This form of MMATVEC is equivalent to the one above, if the 1st

argument equals one.

MOVE the matrix in (R)
,
(C) of size (r)x(c) to matrix in (R),(C)

Moves a matrix from one part of the worksheet to another. The new matrix may overlap
the first matrix. The command MOVE, described in section 3.2, is synonomous with the

command MMOVE. Assume the following numbers are in the worksheet:

Row/Column 12 3 4

2 1.0 2.0 3.0 0.0
1 4.0 5.0 6.0 0.0

T 7.0 8.0 9.0 0.0

The instruction

MMOVE the matrix in row 2 col 1 size 2x3 to matrix in row 3 col 2

would give the following result:

Row/Column 12 3 4

2 1.0 2.0 3.0 0.0
? 4.0 1.0 2.0 3.0

T 7.0 4.0 5.0 6.0

MTRANSPOSE the matrix in (R)
, (C) size (r)x(c) into matrix in (R)

,
(C)

The transpose of the matrix beginning in row (R) of column (C) of size (r)x(c) is stored
in the location designated by the last two arguments in the instruction. The first row of
the original matrix becomes the first column of the new matrix, the second row becomes the
second column, and so forth. The size of the transposed matrix will be (c)x(r). This
instruction may be used to transpose a column into a row by setting (c)=l or a row into a
column by setting (r)=l. The instruction

MTRANSPOSE the matrix in row 6 col 2 size 2x3 into row 6 col 3

would give the following result:

original matrix transposed matrix

Row/Column 2 3 4 2 1

6 2.0 5.0 3.0 2.0 8.0
7 8.0 9.0 10.0 5.0 9.0

3.0 10.0

201



MVECDIAGONAL the matrix in (R) , (C) size (r)x(c), put diagonal in column (C)

The elements on the main diagonal of the matrix beginning in row (R) of column (C) of
size (r)x(c) are stored in the column specified by the last argument. If r/c, and the
matrix is not square, the number of values put in the designated column will equal the
smaller of (r) and (c) . If the following matrix is in the worksheet

Row/Column 2 3 4

6 2.0 5.0 3.0

7 8.0 9.0 10.0

then, the instruction

MVECDIAGONAL the matrix in row 6 col 2 size 2x3 into col 5

will put the following two values in column 5:

Row/Column 5

1 2.0

7 9.0

/ 7
I MVECDIAGONAL matrix in (R)

, (C) of size (r)x(c), put column vector in (R),(C) /

/ /

This instruction is similar to the one above; except the diagonal elements of the matrix
are put in the starting location designated by the last two arguments of the instruction.
Using the data from the previous example, the instruction

MVECDIAGONAL the matrix in row 6 col 2 size 2x3 put in row 6 col 5

would give the following result:

Row/Column _5

6 2.0

7 9.0

MVECMAT vectorize row by row matrix in (R) , (C) size (r)x(c) into column (C)

The elements in the matrix beginning in row (R) of column (C) of size (r)x(c) are put,
as a column vector, in the rows of the column designated by the last argument. The 1st row
of the matrix is put in the first (c) rows of the column, the 2nd row is put in the next (c)

rows of the column and so forth. The number of values stored is (jr)x(c) , and NRMAX is not
changed. The instruction

MVECMAT vectorize by rows matrix in row 6 col 2 size 2x3 into col 5

would create from the matrix on the left below, the column shown on the right:

202



Matrix Column

tow/Column 2 3 4 Row 5

6 2.0 5.0 3.0 1 2.0
7 8.0 9.0 10.0 7 5.0

1
I

7

3.0
8.0
9.0

10.0

/ 7
I MVECMAT matrix in (R)

,
(C) size (r)x(c), put vector into (R) , (C) and below /

/ /

Same as the above instruction; except storage begins in row (R) , instead of row 1, of
column (C) , as indicated by the last two arguments of the instruction. Using the previous
matrix, the instruction

MVECMAT vectorize by rows matrix in row 6 col 2 size 2x3 into row 2 col 5

would give the following result:
if/Column 5

2 2.0

3 5.0

T 3.0

r 8.0
F 9.0
7 10.0

8.3 Matrix Arithmetic .

MADD, MKRONECKER, MMULTIPLY, MRAISE, MSCALAR, MSUBTRACT

For the instructions in this section, define the matrix A = (a..), where a.. is the

element in the ith row and jth column. Other matrices, such as B and C, are defined in a

similar manner.

MADD the matrix in (R)
, (C) size (r)x(c) to (R) , (C) size (r)x(c) put in (R) , (C)

This instruction computes the matrix sum A+B = C, where A and B are the matrices
specified by the first eight arguments and the result is put in the location determined by
the 9th and 10th (last two) arguments. The size of A must be the same as the size of B,

i.e., the 4th and 5th arguments should equal the 7th and 8th arguments, respectively. The

elements of C are

c. = a.. + b... where i=l,2 r and j=l,2,...,c.
ij ij 13

Using the matrices A and B on the left below, the instruction

MADD matrix A in row 4, col 2 size 3x2 to B in 3,7 size 3x2, put C in 6,12

will compute the matrix C = A+B shown on the right:

203



Matrix A Matrix B Matrix C = A+B

Row/Column 1 I Row/Column 7 8 Row/Column 12 13

4

F

2.0 3.0
5.0 9.0

8.0 -2.0

3 2.0

T 6.0
"5" -10.0

-5.0

8.0
12.0

6

7
4.0

11.0
-2.0

-2.0

17.0
10.0

/

/ MADD

/

the matrix in (R) (C) o£ size (r)x(c) to matrix in (R),(C) put in (R)
, (C)

/

/

/

Same as the above instruction; except the arguments which specify the size of the second

matrix (7th and 8th arguments above) are omitted. The instruction

MADD 4,2 size 3x2 to 3,7, put in 6,12

is equivalent to the one in the above example of MADD.

MKRONECKER product (R)
, (C) size (r)x(c) by (R)

, (Q size (r)x(c) put in (R)
, (C)

The Kronecker product A©B = C is computed, where the matrices A and B are specified by
the first eight arguments and ^he result, C, is put in the location determined by the last

two arguments. Let the size of A be mxn, 3rd and 4th arguments, and the size of B be rxs,

7th and 8th arguments. Then, the size of C is mrxns. The matrix C may be partioned as

follows:

"

a
ll
B a

12
B.

•
a
in

B

a
21

B a
22
B.

•
a
2n

B

\lB a
m2

B
•

. a *B
mn

Using the matrices A and B on the left below, the instruction

MKRONECKER product of A in 4,3 size 2x2 by B in 2,10 size 3x2, put C in 3,12

will compute the matrix C shown on the right:

Matrix A Matrix B Matrix C = A©B

i/Column 3 4 Row/Column 10 11 Row/Column 12 13 14 15

4 2.0 4.0 2 1.0 7.0 3 2.0 14.0 4.0 28.0
T -3.0 0.0 T 3.0 -2.0 T 6.0 -4.0 12.0 -8.0

T 1.0 0.0
"5"

2.0 0.0 4.0 0.0

7
-3.0
-9.0
-3.0

-21.0

6.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

: MMULTIPLY matrix 00 , CO size (r)x(c) by (R), (C) size (r)x(c) put in (R), (C)

204



Computes the matrix product AB = C, where A and B are the matrices specified by the
first 8 arguments and the matrix C is stored in the location determined by the last two
arguments. The number of columns of A, the 4th argument (c), must equal the number of rows
of B, the 7th argument (r) . A fatal error occurs if the 4th and 7th arguments are not
equal. This constraint is necessary because matrix multiplication is not commutative, i.e.,
AB i BA, in general. In fact, if the product AB is defined, the product BA may not be
defined. Let n equal both the 4th and 7th arguments, then the elements of the matrix C are:

c. .

-a-J
i'U=l 11U UJ'

where i=l,2,...,r (3rd argument) and j=l,2,...,c (8th argument).

Using the matrices A and BThe command MMULT is an acceptable abbreviation for MMULTIPLY.
on the left below, the instruction

MMULTIPLY matrix A in 4,3 size 2x2 by B in 2,10 size 2x3, put C in 6,20

will compute the matrix C = AB shown on the right:

Matrix A Matrix B Matrix C = AB

//Column 3 4 Row/Column 10 11 12 Row/Column 20 21 22

4 2.0
5" 3.0

6.0
-2.0

2

7
6.0
3.0

-1.0

0.0
7.0
2.0

6

7
30.0
12.0

-2.0

-3.0
26.0
17.0

In computing C, each individual product is stored as a double precision number. The
products are then sorted in ascending order. The summation, which is also performed in
double precision arithmetic, begins with the mid-point value(s) and proceeds from there.

For example, suppose the sorted products were -4, -2, 1, 2 and 4, then the summation would
be performed as follows: 1 + (-2) + 2 + (-4) +4. This method of computation is used to
provide greater accuracy. For large matrices it will increase the computing time
appreciably.

The matrix specified by the first four arguments is multiplied by itself (K) times,
where (K) is the 5th argument and a constant. If (K) is not an integer, it is truncated to

an integer and no diagnostic is printed. ((K) can be written without a decimal point.) If

the value of (K) is zero, the indentity matrix is computed. The matrix must be square,

i.e., the number of rows (r) must equal the number of columns (c) . Using the matrix A on

the left below, the instruction

MRAISE matrix A in row 4 col 3 of size 2x2 to 3.0 power, put in 6,20

will compute the result Y shown on the right:

Matrix A Matrix Y = A

Row/Column

4 2.0
3.0

6.0
-2.0

Row/Column

6

7

20_

44.0
66.0

21

132.0
-44.0

MSCALAR matrix (R),(C) of size (r)x(c) by constant (K), put matrix in (R) , (C)

The scalar product Y =sA is computed, where A is the first matrix and s is the scalar

(constant) (K) . The matrices Y and A have the same size, (r)x(c). The elements of Y are

205



yij
= sa

ij'
where i=l,2,...,r and j=l,2,...,c.

MSCALAR is actually a special case of MULTIPLY (section 7.1). The instruction

MSCALAR matrix A in 4,3 size 2x2 by -2.0, put Y in 6,20

using the matrix A on the left below, will compute the result Y = sA shown on the right:

Matrix A Matrix Y = sA

Row/Column 3 4 Row/Column 20 21

4

5

2.0 6.0
3.0 -2.0

6

7
-4.0

-6.0
-12.0

4.0

: MSUBTRACT mat (R)
,
(C) size (r)x(c) minus mat (R)

,
(C) size (r)x(c) into (R),(C) :

The matrix subtraction A-B = C is computed, with A the 1st matrix, B the 2nd matrix and
C the 3rd matrix. The size of B must agree with the size of A. The matrices A, B and C all
have the same dimensions, (r)x(c). The elements of C are

C. = a.. - b.., where i=l,2,...,r and j=l,2,...,c.

The command MSUB may be used as an abbreviation for MSUBTRACT. Note, the order of
subtraction is the reverse of that in SUBTRACT described in section 2.1. Using the matrices
A and B on the left below, the instruction

MSUBTRACT matrix A in 4,2 size 3x2, minus B in 3,7 size 3x2, put C in 6,12

will compute C = A-B shown on 'the right:

Matrix A Matrix B Matrix C = A-B

'/CDlumn 2 3 Row/Column 7 8 Row/Column 12 13

4 2.0 3.0 3 2.0 -5.0 6 0.0 8.0
5" 5.0 9.0 4" 6.0 8.0 7 -1.0 1.0
6 8.0 -2.0 7 -10.0 12.0 S" 18.0 -14.0

/ T
I MSUBTRACT matrix (R)

,
(C) size (r)x(c) minus mat (R) , (C) put into (R)

, (C) /

/ /

Same as the above instruction; except the size of the second matrix is not specified.
The size of the second matrix is taken to be the same as the size of the first matrix.

8.4 Special Matrix Multiplication .

M(AD), M(AV), M(DA), M(V'A), M(X'X), M(XX'), M(X'AX), M(XAX')

Each of the commands in this section contain right and left parentheses . Several of the
commands contain an apostrophe to denote the transpose of a matrix (or vector) . These are
the only commands in the CMNITAB II system which use either parentheses or an apostrophe.

Each instruction performs a special form of matrix multiplication. In each case, the
result of the multiplication is a matrix (or vector) denoted by Y with elements y... The

notation X = (x..), A = (a..), etc. will be used to denote a matrix X with elements x.. in
13-" 13" 13

206



the ith row and jth column, a matrix A with elements a. . in the ith row and jth column,

etc.. The basic definition of matrix: multiplication is given in section 8.3.

iM(AD) mat (R) , (C) size (r)x(c) times mat with (C) in diag, put mat in (R) , (C)

The first matrix A is postmultiplied by a diagonal matrix, D, whose main diagonal
elements are the 1st (c) numbers (independent of NRMAX) in the column (C) , designated by the
5th argument. The matrix D is not actually stored in the worksheet. The result is the
matrix Y = AD, with elements

y.. = d.a.., where i=l,2,...,r and j=l,2,...,c.

The matrices A and Y have the same dimensions. The instruction

M(AD) matrix A in 4,2 size 3x2 times diagonal in col 4, put Y in 3,7

used with the data on the left below, will compute the matrix Y = AD shown on the right:

Matrix A Diagonal of D Matrix Y = AD

2 3 Row/Column 4Row/Column

4

5
6~

2.0

5.0
8.0

3.0
9.0
-2.0

2.0
-3.0

Row/Column

3
4"

5"

1 8

4.0 -9.0

10.0 -27.0

16.0 6.0

M(AV) mat (R)
, (C) size (r)x(c) by vector in col (C) put vector in col (C)

The first matrix, A, is postmultiplied by the vector V in column (C) to form the column
vector Y = AV, with elements

y. = Y -.v a. , where i=l,2,...,r.
1 ^u=l u 1U

The column vector Y is put in the first (r) rows of column (C) . The instruction

M(AV) matrix A in 4,2 size 3x2 by vector in col 4, put Y in column 7

using the matrix A and the vector V on the right below, will compute the result Y = AV shown
on the right:

Vector VMatrix A

Row/Column 2 3

4 2.0 3.0
5 5.0 9.0
F 8.0 -2.0

Row/ Column

1

7
2.0

-3.0

Vector Y = AV

Row/ Column 7

1

1
J

-5.0

-17.0

22.0

r
I M(AV) mat (R),(C) size (r)x(c) by column (C) put vector in row (R) of col (C) /

/ /

Same as the above instruction; except the storage of the column vector Y = AV begins in

the designated row (R) of column (C) , rather than the 1st row of column (C) , where (R) and
(C) are the 6th and 7th (last two) arguments.

207



M(DA) mat (R)
,
(C) size (r)x(c) premult by mat with (C) in diag, put in (R) , (C)

The first matrix, A, is premultiplied by a diagonal matrix, D, whose main diagonal
elements are in column (C), designated by the 5th argument. The matrix D is not actually
stored in the worksheet. The result is Y = DA, with elements

yij
= d

l
a
lj'

where i=1
»
2 »---» r and j=l,2,...,c.

Y has the same dimensions as A. The instruction

M(DA) matrix A in 4,2 size 3x2, premultiplied by col 4, put Y in 3,7

used with the data on the left below, will compute the result shown on the right:

Diagonal of D Matrix A Matrix Y = DA

Row/Column 4 Row/Column 2_ _3 Row/Column 1_ 8

1 2.0 4 2.0 3.0 3 4.0 6.0
2~ -3.0 "5" 5.0 9.0 J -15.0 -27.0
3" 1.0 o" 8.0 -2.0 "5" 8.0 -2.0

MfV'A) mat (R),(C) size (r)x(c), vector in col (C), put row vector in row (R)

The matrix A is premultiplied by the transpose of a column vector, V, to form the row
vector Y = V'A, with elements

y. = V n v a ., where j = l,2,...,c.'
J

LU=1 U UJ
* J ' ' '

The result is put in row (R) , 6th argument, of the first (c) columns. The instruction

M(V'A) matrix A in 4,2 size 3x2 by vector in col 4 put Y in row 7

would give the following results:

Column Vector V Matrix A Row Vector Y = V'A

Row/Column 4 Row/Column 2 3 Row/Column 1 2

1 2.0 4 2.0 3.0 7 -3.0 -23.0
1 -3.0 "5" 5.0 9.0
T 1.0 ~5 8.0 -2.0

/
:

7
I M(V'A) mat (R)

,
(C) size (r)x(c), vector in col (C), put row vector in (R) , (C) /

/ /

Same as above instruction; except storage of the row vector begins in the designated
column, rather than in column 1. Using the data from the example above, the instruction

MfV'A) matrix A in 4,2 size 3x2 by vector in col 4 put Y in row 7 of col 3 on

would give the following results:

208



Column Vector V

Row/Column 4_

1 2.0
1 -3.0
3" 1.0

Matrix A Row Vector Y = V'A

Row/Column 2 3 Row/Column 3 4

4
3"

6"

2.0

5.0
8.0

3.0
9.0

-2.0

7 -3.0 -23.

M(X'X) x -matrix in (R) , (C) of size (r)x(c) into (R) , (C)

The matrix X is premultiplied by its transpose to produce Y = X'X, with elements

y.. = T n
x .x ., where i=l,2...c and j=1.2..c.

The size of Y is (c)x(c). The instruction

M(X'X) matrix in 4,2 size 3x2 put Y in 3,7

applied to the matrix X on the left below, will compute the matrix Y = X'X shown on the
right:

Matrix X Matrix Y = X'X

r/Ccilumn 2 3 Row/Column 7 8_

4

5
5"

2.0
5.0
8.0

3.0
9.0
-2.0

3 93.0 35.0
35.0 94.0

M(XX') x-matrix in (R) , (C) of size (r)x(c) into (R) , (C)

Similar to the above instruction; except the matrix X is postmultiplied by its
transpose. The result is Y = XX' with elements

v.. = y°
n x. x. , where i=l,2,...,r and j=l,2,...,r.

' 1J
LU=1 1U JU

Tlie size of Y is (r)x(r). The instruction

M(XX') matrix in 4,2 size 3x2 put Y in 3,7

Matrix X

J.± V.

Matrix Y = XX'

Row/ Column 2 3 Row/Column 7 8 9

4 2.0 3.0 3 13.0 37.0 10.0
5" 5.0 9.0 4" 37.0 106.0 22.0

F 8.0 -2.0 5 10.0 22.0 68.0

: M(X'AX) a -mat in cr: ,(C) size (r)x (c), x-mat (R),(C) size (r)x(c), into (R),(C) :

The transformation Y = X'AX is computed. A is the first matrix specified, X is the
second matrix specified and the results are stored in the third matrix, Y. Matrix A is

209



square and of size nxn, specified by the 3rd and 4th arguments. Matrix X has size nxm,
specified by the 7th and 8th arguments. The number of rows of X, 7th argument, must equal
the number of rows and columns of A, 3rd and 4th arguments. The matrix Y is square of size
mxm. Let a. . be the elements of A, x. . be the elements of X and y. . be the elements of the

iJ iJ ij

result Y. Then,

yij
=

^u=l^v=l
a
uv
x
ui

x
vj '

where i=1
>
2 >---.m and j=l,2,...,m (8th argument).

If m=l, Y is a quadratic form. For the matrices A and X on the left below, the instruction

M(X'AX) matrix A in 2,3 size 2x2, X in 3,5 size 2x3, put Y in 2,8

will compute the result Y = X'AX shown on the right:

Matrix A

4

Matrix

Row/Column 5

X

6 7

Matrix Y = X'AX

Row/Column 8 9Row/Column 3 10

2 1.0
3 2.0

3.0
-4.0

3 -2.0

J -1.0
0.0
5.0

-2.0

0.0
2 10.0 -10.0

3 0.0 -100.0
4~ 10.0 -30.0

8.0
-20.0

4.0

M(XAX') a -mat in (R) , (C) size (r)x(c), x-mat (R) , (C) size (r)x(c), into (R)
, (C)

The transformation Y = XAX' is computed. A is the first matrix specified, X is the
second matrix specified and the results are stored in the third matrix, Y. Matrix A is
square and of size nxn, specified by the 3rd and 4th arguments. Matrix X has size mxn,
specified by the 7th and 8th arguments. The number of columns of X, 8th argument, must
equal- the number of rows and columns of A, 3rd and 4th arguments. The matrix Y is square of
size mxm. Let a., be the elements of A, x.. be the elements of X and v.. be the elements

of the result Y. Then,

y..=y .y -.a x. x. , where i=l,2, . . . ,m and j=l,2, . . . ,m (7th argument)

.

1J
t'U=l i'V=l UV 1U JV

For the matrices A and X on the left below, the instruction

M(XAX') matrix A in 2,3 size 2x2, X in 3,5 size 3x2, put Y in 2,8

will compute the matrix Y = XAX' shown on the right:

Matrix A Matrix X Matrix Y = XAX '

Row/Column 8_ 9 10

2 4.0 -28.0 -12.0

3 -18.0 -124.0 4.0
4 -10.0 20.0 20.0

MEIGEN, MINVERT, MORTHO, MTRIANGULARIZE

The four instructions described here are useful in matrix analysis. There are three
forms of MEIGEN which compute (i) only the eigenvalues, (ii) only the eigenvectors, and
(iii) both the eigenvalues and eigenvectors. An example is given for the last form. The

210

Row/Column 3 4 Row/Column 5 6

2 1.0 3.0 3 -2.0 0.0
3 2.0 -4.0 T -1.0 5.0

5 3.0 1.0

8.5 Matrix Analysis.



error messages which can be printed by any of the three forms of MEIGEN are only listed
under the first form. The computations performed by MORTHO and MTRIANGULARIZE are related
to the computations performed by the FIT instruction described in section 4.5.

MEIGEN of the matrix in (R),(C) of size (r)x(c), put eigenvalues in column (C)

For the matrix A designated by the first four arguments, the instruction computes the
eigenvalues (characteristic roots or latent roots) of the matrix A and puts them in
descending order in the column designated by the 5th (last) argument. The matrix A must be
square and symmetric. The eigenvalues, X., are the roots of the characteristic polynomial

|A-XI| = 0. The Jacobi method is used to compute the eigenvalues.

If A is not square, 3rd and 4th arguments equal, the following informative diagnostic is

printed:

* NO OF ROWS NOT = TO COLS. MATRIX USED LARGEST SQUARE

If (r)x(c) exceeds 6, 750+2 (r) (in NBS computer), the following fatal error message is

printed:

*** INSUFFICIENT SCRATCH AREA

If the matrix A is not symmetric, the following fatal error mesage is printed:

*** MATRIX IS NOT SYMMETRIC

/
_ , , ,

j
I MEIGEN of matrix in (R)

, (C) size (r)x-(c), put eigenvectors in (R)
, (C) /

/ /

This form of MEIGEN computes the eigenvectors, but not the eigenvalues. For the matrix
A and eigenvalues X., the eigenvectors, x., satisfy the relation Ax. = X.x., where i =

l,2,,..,r=c. The eigenvectors are stored as a matrix as determined by the 5th and 6th (last

two) arguments. The eigenvectors are stored as column vectors according to the descending
order of the eigenvalues, X.. Each vector is normalized so that the sum of squares of the

elements is unity. Thus, except for sign, each vector is unique. When two eigenvalues are

equal, the corresponding eigenvectors will be orthogonal.

f— ~ ' '

7
I MEIGEN matrix in (R)

, (C) size (r)x(c), put values in (C) vectors in (R) , (C) /

/
, , ,

/

Both the eigenvalues and eigenvectors of the symmetric matrix, designated by the first

four arguments, are computed and stored. The (r)=(c) eigenvalues are put in the column

designated by the 5th argument and the eigenvectors are stored as a matrix in the location

determined by the 6th and 7th (last two) arguments. Using the following matrix, A:

Row/Column 3 4 5 6

2 4.0 4.0 -2.0 -6.0

T -2.0 -6.0 4.0 4.0

I -6.0 -2.0 4.0 4.0

z 4.0 4.0 -6.0 -2.0

the instruction

211



MEIGEN matrix: A in row 2, col 3 size 4x4, put values in col 7, vectors in 2,8

would compute the four eigenvalues and eigenvectors of A and put them in the worksheet as
follows:

Eigenvalues Eigenvectors

//Column 7 Row/Column 8 9 10 11

1 2.5600000+02
2 16.000000
3 16.000000
4" -1.1324343-06

2

3
4"

5

.50000000

.50000001
-.50000002
-.50000001

-.53154530
.53154529

-.46632566
.46632564

-.46632566
.46632564
.53154528

-.53154529

.49999999

.50000002

.50000000

.49999999

MINVERT the matrix; in (R)
, (C) of size (r)x(c), put inverse in (R)

, (C)

MINVERT computes the inverse, A" 1

, of the matrix A, such that AA" 1 = I. The 1st four
arguments specify the location and size of A and the 5th and 6th (last two) arguments
determine the location of the inverse of A, A" 1

. The commands INVERT and MINVERT are
synonomous. An example of the use of MINVERT to invert a (scaled) Hilbert matrix is shown
on page 213. (The scaling factor 60.0 was used to make each element an integer.)

The matrix A must be square so that the 3rd and 4th arguments, (r) and (c) , must be
equal. If r^c, the following informative diagnostic is printed:

* NO OF ROWS NOT = TO COLS. MATRIX USED IS LARGEST SQUARE.

If r and c are inadvertently too large, the following fatal error occurs:

*** DEFINED MATRIX OVERFLOWS WORKSHEET

In order to invert a matrix, a large amount of space (scratch area) is required in the
computer, f'f (r) exceeds 77, or 2(r+2) 2

is greater than the size of the worksheet, 12,500,
the following fatal error message is printed:

*** INSUFFICIENT SCRATCH AREA

Finally, if the matrix, A, is singular, the following fatal error message is printed:

*** MATRIX IS (NEARLY) SINGULAR

The inversion algorithm used was written by A. R. Sadaka and submitted to the SHARE
library. Elementary row operations on the input matrix, A, transform it into the unit
matrix of the same magnitude. The matrix of these transformations is the inverse.

Selective pivoting is used to minimize truncation error accumulation. Further description
of the SHARE subroutines may be obtained in SHARE write-ups 3180, and 3181, Catalog of
Programs for IBM 704-709-7040-7090 and 7094 Data Processing Systems, IBM, File No.

7040/7090-20. This algorithm enables error bounds to be computed.

In the LIST OF COMMANDS, DATA AND DIAGNOSTICS, an error bound is printed immediately
below the command MINVERT, if an inverse has been obtained. The form of the error bound, as
seen on page 213, is

+ SMALLEST ERROR BOUND ON INVERTED MATRIX IS .1-04 ++++

212



1

o o oo o o
CJl o o o

X o o oo o o5 o o o
H LO O O

tO tO

E-J
Ci
PJmj en

en o o
X Cn O O

OC i 01 o o
pl-l CJlOO
O cn

en
m m n
00
rt 1 to" to

H cnU 01 O
5

cn
r— cx>

w O CT» O
cn

LO CJl

t—1 LO lo

£
e

000000o o o
Kl o 00000000
OU1N

00
I CS1OriH

\0 O O OCOOOOOOOO
10 O O

to tO

PL,

c OOO ro cni to

w OOO O i-H 1—

1

h4 CM C 1-OOOOOOO 000
§ OOO O CD OOOOO O O LTS \0 C^l O
w tO CM tH

1 to to

3
X 1

H OJ
H

S 1 a- ** Ln

6 x OOO ON NOOO h OOO
gs

1—1 d *OOO w CD O O
O O CD M OOO

J u-3 O OOOO 1—

I

Hvom
H iOMN K
C-iW Uh
« O
jM w

£ —1

hO O pj CJ> iH CV1 tO

to ^ g Q̂
g Pi

K) N H t^) Oi CO M
1 HHW

HOOOOl\00
1 C<

£

S

213



z..|
2

]

Let A be the matrix to be inverted and X be the result of the inversion. Define Y = I-

AX. Furthermore, for any square matrix Z = (z..), size nxn, let N(Z) be a norm of Z defined
in any of the following three ways:

1-1

(1) N(Z) = [}
n

.

X ) J

(2) N(Z) = n max |z..|

(3) N(Z) = max [
n

lz..|.

In order to guarantee that X be a good approximation to A' 1

, it is necessary to have ERR =

N(X)N(Y)/[1-N(Y)] be positive and small. The instruction MINVERT computes ERR for each of
the norms defined above and the smallest one is printed as the error bound. A description
of error checking methods may be found in Chapter 6 of "Survey of Numerical Analysis," J.

Todd, Ed., McGraw-Hill (1962). Note, AX being close to I does not guarantee that X is close
to A" 1

.

The error bound is a very conservative estimate of the error in computing the inverse.
In the example on page 213, the error bound indicates that the results of the inversion are
accurate to about 5 significant digits, whereas, in reality, the results are correct to 6

significant digits.

The Gram-Schmidt orthonormalization process is applied to the matrix, X, designated by
the first four arguments, using the weights in the first (r) rows of the column designated
by the 5th argument. The orthonormal vectors are stored as a (r)x(c) matrix as indicated by
the 6th and 7th (last two ) arguments. See "Orthonormal izing codes in numerical analysis.",
P. J. Davis, Chapter 10 of "Survey of Numerical Analysis," J. Todd, Ed., McGraw-Hill (1962).

All weights must be positive. Otherwise, a fatal error occurs. If r<c, the instruction
is not executed and a fatal error message is given. If the last two arguments do not
specify enough area in the worksheet to store the orthonormal vectors, the following
informative diagnostic is given:

* PARTIAL STORAGE OF MATRIX

For the following matrix, X, in 1,1 and weights in column 10:

Row/Column 12 3 4 Column 10

1 1.0 1.0 2.0 2.0 2.0

2 1.0 2.0 2.0 3.0 2.0

3 0.0 3.0 3.0 3.0 1.0
4~ 0.0 2.0 1.0 1.0 1.0

5 0.0 1.0 -3.0 0.0 1.0

6 0.0 1.0 0.0 0.0 1.0

7 0.0 0.0 1.0 0.0 1.0

the instruction

MORTHO matrix X in 1,1 size 7x4 with weights in col 10, put in 11,41

would compute the transformation $ = XA, where A is an upper triangular matrix. Shown below
is the matrix 16.$, rather than $, for ease in reading:

214



Row/ Column 41 42 43 44

11 8.0 -2.0 1.0 -3.0
17 8.0 2.0 -1.0 3.0
IT 0.0 12.0 6.0 6.0
IT 0.0 8.0 0.0 -8.0

IS 0.0 4.0 -14.0 2.0
Iff 0.0 4.0 -2.0 -10.0
IT 0.0 0.0 4.0 -4.0

In a FIT instruction (section 4.5), $ = XA is computed from the set of vectors X. The
matrices A and X are related by X'WX = (A

-1
) '(A

-1
), where W is a diagonal matrix with the

column of weights on the diagonal.

/ 7
I MORTHO mat (R) , (C) size (r)x(c) weights (E) put in (R)

,
(C) trans mat (R)

, (C) /

/ /

This form of MORTHO is the same as the one above; except in the transformation $ = XA,

the transformation matrix, A, is also stored in the worksheet. The matrix X is designated by
the first four arguments, the weights by the 5th argument, the location of the orthornormal
matrix, $, by the 6th and 7th arguments and the location of the transformation matrix, A, by
the 8th and 9th (last two) arguments. The matrix A is upper triangular. Using the matrix X
defined in the example above, the instruction

MORTHO X in 1,1 size 7x4 wts in col 10, put orthonormal mat in 11,41 and trans in 21,41

would locate the transformation matrix, A, in the worksheet as shown

reading, the matrix shown is actually 16. A.

below. For ease

Row/Column 41 42 43 44

11 8.0 -6.0 -5.0 -17.0

12 0.0 4.0 -2.0 -10.0

13 0.0 0.0 4.0 -4.0

IT 0.0 0.0 0.0 16.0

See the description of the second form of MTRIANGULARIZE, below, for further remarks.

A lower triangular matrix, T, is computed for the matrix, A, such that A = TT' . The

triangularization is performed only for symmetric matrices of full rank with leading

submatrices nonsingular. The matrix, A, to be triangularized is designated by the first

four arguments. A should be square, so the 3rd and 4th arguments should be equal. The

triangular matrix, T, is located in the worksheet as determined by the 5th and 6th (last

two) arguments. The size of T is (r)x(r) and all the elements above the principal diagonal

are equal to zero. Page 216 contains the results and a set of instructions to illustrate

the use of both forms of the instruction MTRIANGULARIZE.

The fatal error
*** ILLEGAL *STATEMENT*

will occur if any of the following three conditions exist:

(1) r^c

(2) Any leading submatrix is singular.

(3) A is not symmetric,
|

|a. ./a. . | -l| >10" 6
.

215



OMNITAB EXAMPLE OF MTRIANGULARIZE
THE FOLLOWING IS AN .EXAMPLE OF THE MTRIAN COMMAND.

PAGE

MATRIX A IS THE ORIGINAL MATRIX.
ROW/COL

3

4

5

6

2

4.0000
6.0000
8.0000
10.0000

3

6.0000
25.0000
20.0000
27.0000

MATRIX T IS THE TRIANGULAR OF MATRIX A (T X
ROW/COL 7 8

3 2.0000 .0000
4 3.0000 4.0000
5 4.0000 2.0000
6 5.0000 3.0000

MATRIX C IS THE INVERSE OF MATRIX T
ROW/COL 11 12

3 .5000 .0000
4 -.3750 .2500
5 -.3125 -.1250
6 -1.0625 -.6250

4 5

8.0000 10.0000
20.0000 27.0000
36.0000 30.0000
30.0000 36.0000

T-TRANSPOSE = A)

9 10

.0000 .0000

.0000 .0000
4.0000 .0000
1.0000 1.0000

13 14

.0000 .0000

.0000 .0000

.2500 .0000
-.2500 1.0000

OMNITAB EXAMPLE OF MTRIANGULARIZE PAGE

LIST OF COMMANDS, DATA AND DIAGNOSTICS

0.0 0.0 0.0
0.0 0.0 0.0
4.0 6.0 8.0
6.0 25.0 20.0
8.0 20.0 36.0

10.0 27.0 30.0

READ THE FOLLOWING DATA INTO COLUMNS 2***5

0.0
0.0
10.0
27.0
30.0

36.0
MTRIAN MATRIX IN R=3 C=2 SIZE=4X4 PUT TRIANGULAR IN R=3 C=7
TITLE1 THE FOLLOWING IS AN EXAMPLE OF THE MTRIAN COMMAND.
NEW PAGE
SPACE
NOTE MATRIX A IS THE ORIGINAL MATRIX.
FIXED 4

MPRINT MATRIX A IN R=3 C=2 SIZE=4X4
SPACE
NOTE MATRIX T IS THE TRIANGULAR OF MATRIX A (T X T-TRANSPOSE = A)

MPRINT MATRIX B IN R=3 C=7 SIZE=4X4
MTRIAN MATRIX IN 3,2 SIZE=4X4 PUT TRIANGULAR IN 3,7 INVERSE IN 3,11
SPACE
NOTE MATRIX C IS THE INVERSE OF MATRIX T
MPRINT MATRIX C IN R=3 C=ll SIZE=4X4
STOP

216



Formulas for performing the triangularization are described, starting on page 6-38, in
"Experimental Statistics," Natrella, M. G. , National Bureau of Standards Handbook 91, U. S.

Government Printing Office.

/ 7
I MTRIANGULARIZE matrix (R)

, (C) size (r)x(c) in (R) , (C) inverse in (R)
, (C) /

/ /

This form of the instruction is the same as the one above; except the inverse of the
triangular matrix is also computed. The inverse is put in the location in the worksheet
determined by the 7th and 8th (last two) arguments.

In order to invert a matrix, a large amount of scratch area (internal space) is needed
for the computations. If (r) exceeds 77, or 2(r+2) 2

is greater than the size of the
worksheet, the following fatal error occurs:

*** INSUFFICIENT SCRATCH AREA

An example of the use of this form of MTRIANGULARIZE is also shown on page 216. The
matrix A in 3,2 is equal to the matrix X'WX, where the matrices X and W are defined under
MORTHO on page 214. Hence, X'WX = TT\ W is a diagonal matrix with weights on the
principal diagonal. The transpose of the matrix C, equal to T inverse, in 3,11 on page 216,
is equal to the transpose of the transformation matrix, A, where 16.A is in 11,41 shown on
page 215.

Remark

In a weighted least squares analysis, see section^4.S, estimates of $ are obtained for
the model y = Xf3 + e. The estimates are computed from (3 = A$'Wy. The matrix A is the
inverse of T transpose when MTRIANGULARIZE is applied to X'WX. The matrix A is also the
transformation matrix computed when MORTHO is applied to the matrix X. The matrix $ can be

obtained by applying MORTHO to the design matrix X. The Fourier coefficients, described in

section 4.5, are given by $'Wy. It is instructive to verify the above statements using the

commands FIT, MORTHO and MTRIANGULARIZE. This can be done using the measurements y = 13.0,

17.0, 18.2, 8.8, -3.0, 2.8 and 2.1 and the X matrix and weights given on page 214.

8.6 Properties .

MPROPERTIES, SMPROPERTIES

The instructions MPROPERTIES and SMPROPERTIES evaluate properties of the matrix
specified by the first four arguments. If the matrix is square (e.g., r=c) , 31 different
properties of the matrix will be computed, while 20 properties are computed if the matrix is

not square. An MPROPERTIES instruction automatically prints the different properties of the
designated matrix, whereas SMPROPERTIES stores results, but suppresses the automatic
printing. The first 18 properties computed by MPROPERTIES are the same as those computed by
APROPERTIES, described in section 7.4.

There are six different forms of MPROPERTIES. The six forms differ only in the amount
of information which is stored. The first form does not provide any storage. The remaining
forms provide storage of results as follows: (2) properties, (3) column averages, (4)

properties and column averages, (5) column averages and row averages, and (6) properties,
column averages and row averages.

The printing of the properties shows the row in which the property is stored, if storage
is requested, the description of the property and the value of the property. The meaning of

most of the descriptions should be clear, but some may require a word of explanation, which
is given below. Items 1 through 18, 28 and 29 are always printed, for both square and non-

square matrices.

217



Pages 219 and 220 show the automatic printing of MPROPERTIES for both a square matrix
and a non-square matrix using the following set of instructions. (A few inconsequential
changes were made in the actual computer printing in order to make it fit on a page.)

OMNITAB- EXAMPLE OF MPROPERTIES
READ 12 3 4

4 6 8 10

6 25 20 27

8 20 36 30

10 27 30 36

MPROPERTIES MATRIX IN 1,1 SIZE 4X4 STORE PROPERTIES IN 10
MPROPERTIES MATRIX IN 1,1 SIZE 3X4
STOP

The trace of a matrix, item 1, is the sum of the numbers in the principal diagonal; that
is the sum of the numbers in the diagonal starting with the number in the upper left-hand
corner and moving down and to the right. The number of values used in the sum is printed in
parentheses. Item 2, trace no. 2, is evaluated using the formula

£, „£ (a. .a - a, .a ,), where n is the smaller of r and c.

Trace no. 2 is the second elementary symmetric function of the eigenvalues and also the
second coefficient in the characteristic polynomial.

Item 14, the sum of squares about the mean, is the same as the (corrected) total sum of
squares printed by the instruction TWOWAY, described in section 4.4. Items 15 and 16 are
the within sums of squares and should not be confused with the between sums of squares
printed by TWOWAY.

~

A square matrix is orthogonal if the matrix premultiplied by its transpose is equal to
the identity matrix (e.g., A'A = I). For a complete discussion of matrices, see "Theory of
Matrices," S. Perlis, Addison-Wesley (1952). MPROPERTIES also checks the orthogonality of
non-square matrices by using the largest square matrix contained in the specified
rectangular matrix. If r> c, the condition to be satisfied is A'A = I, otherwise, for r<c,
the condition is AA' =1. In the automatic printing, item 28, the answer will be no, if the
matrix is not orthogonal and yes, if the matrix is orthogonal. Enclosed in parentheses,
after the answer, is the value stored (if storage is requested) in row 28. The value will
be zero if the matrix is non- orthogonal, one if the matrix is exactly orthogonal (A'A (or
AA') = I, exactly) and two if A'A = I within a tolerance. For the tolerance to be
satisfied, each number in A'A must be zero or one plus or minus 1x10" '. For non-square
matrices, the automatic printing will indicate row or column wise orthogonality. Item 29 is

similar to item 28; except the product A'A (or AA') is examined to see if it is a diagonal
matrix, rather than the identity matrix.

For square matrices, items 19 through 27, 30 and 31 are also computed. The norms, items

21, 22 and 23, are error bounds on the inverse of the matrix. See the discussion of MINVERT
in section 8.5 for further details.

A matrix will be a normal matrix, item 24, if it is symmetric, item 25, skew symmetric,

item 26, or diagonal, item 27. A matrix, A, is symmetric if A = A' . A skew symmetric

matrix is one where A = -A' and all the principal diagonal elements equal zero. A matrix is

diagonal, if all the off-diagonal elements equal zero (e.g., a.. =0, if i^j). The automatic

printing will show YES if condition is true and NO if the condition is not true. The value
inside the parentheses is the value stored, if storage has been requested. Zero indicates

the condition has not been met, one indicates the condition has been met exactly and two

indicates the condition is true within the tolerance 1x10" 7
.

218



OMNITAB EXAMPLE OF MPROPERTIES PAGE

PROPERTIES OF

COL 10
GENERAL

R
1 TRACE ( 4 VALUES USED)

2 TRACE NO. 2

3 MAXIMUM ELEMENT

4 MINUMUM ELEMENT

5 MAXIMUM ELEMENT IN ABS VALUE

6 MINUMUM ELEMENT IN ABS VALUE

7 MIN NON-ZERO ELEM IN ABS VAL

8 NUMBER OF POSITIVE ELEMENTS

9 NUMBER OF ZERO ELEMENTS

10 NUMBER OF NEGATIVE ELEMENTS

11 SUM OF TERMS

12 AVERAGE
13 SUM OF SQUARES

14 SUM OF SQUARES ABOUT MEAN

15 WITHIN ROWS SUM OF SQUARES

16 WITHIN COLS SUM OF SQUARES

17 SUM OF ABSOLUTE VALUES

18 AVERAGE OF ABSOLUTE VALUES

SPECIFIC

4 X 4 MATRIX STARTING LOCATION (1,1)

1.010000+02
1.255000+03

3.600000+01
4.000000+00
3.600000+01
4.000000+00
4.000000+00

16

3.030000+02
1.893750+01
7.691000+03
1.952937+03
1.112750+03
1.112750+03
3.030000+02
1.893750+01

19 DETERMINANT

20 RANK
NORMS

21 SQ ROOT OF SUM OF B(I,J)**2

22 N*MAX(B(I,J))

23 MAX VAL OF ROW SUM

24 NORMALITY
25 SYMMETRY
26 SKEW SYMMETRY

27 DIAGONALITY

28 ORTHOGONALITY

29 A'A=DIAGONAL MATRIX

1.024000+03
4

2.7-06
1.2-05
2.5-06

YES*(1)
YES*(1)
NO* (0)

NO* (0)

NO*(0)
NO*(0)

30 TRIANGULAR
31 STOCHASTIC (R AND/OR C SUMS=1)

NO** (0)

NO***(0)

* IF ANSWER IS YES, (R,C)=1 OR 2. (1, IF EXACT; 2, IF TOLERANCE IS SATISFIED.)

IF ANSWER IS NO, (R,C)=0.

219



OMNITAB EXAMPLE OF MPROPERTIES PAGE

GENERAL
PROPERTIES OF 3 X 4 MATRIX STARTING LOCATION (1,1)

1 TRACE ( 3 VALUES USED)
2 TRACE NO. 2

3 MAXIMUM ELEMENT
4 MINUMUM ELEMENT
5 MAXIMUM ELEMENT IN ABS VALUE
6 MINUMUM ELEMENT IN ABS VALUE
7 MIN NON-ZERO ELEM IN ABS VAL

8 NUMBER OF POSITIVE ELEMENTS
9 NUMBER OF ZERO ELEMENTS

10 NUMBER OF NEGATIVE ELBffiNTS

6.500000+01
6.440000+02

3.600000+01
4.000000+00
3.600000+01
4.000000+00
4.000000+00

12

11 SUM OF TERMS 2.000000+02
12 AVERAGE 1.666667+01
13 SUM OF SQUARES 4.666000+03
14 SUM OF SQUARES ABOUT MEAN 1.332667+03
15 WITHIN ROWS SUM OF SQUARES 7.400000+02
16 WITHIN COLS SUM OF SQUARES 8.293333+02
17 SUM OF ABSOLUTE VALUES 2.000000+02
18 AVERAGE OF ABSOLUTE VALUES 1.666667+01

SPECIFIC

28 ORTHOGONALITY
29 A'A=DIAGONAL MATRIX

NO* (0)

NO* (0)

(R,C)=0, IF MATRIX IS NOT ORTHOGONAL; (R,C)=1 OR 2 IF MATRIX IS ORTHOGONAL ROW WISE;
(R,C)=3 OR 4, IF MATRIX IS ORTHOGONAL COL WISE. ((R,C)=I, IF 1=1,3 ORTHOGONALITY EXACT;
FOR 1=2 OR 4 RELATIVE WITHIN ERROR BOUND OF .IE- 6)

220



A matrix is triangular, item 30, if all the elements below (or above) the principal
exactly equal to zero. Enclosed in the parentheses is the value stored (if storage has been
requested) in row 30. The value will be zero, one, two or three depending upon whether the
matrix is not triangular, lower triangular (values above diagonal equal zero) , upper
triangular (values below diagonal equal zero) or all off-diagonal elements equal zero.

A matrix is defined to be stochastic, item 31, if all its elements are non-negative and
all the row (or column) sums are one. The value in parentheses is zero, one, two or three
depending upon whether the matrix is non-stochastic, all rows sum to unity, all columns sum
to unity or both all row and columns sums are unity, respectively. For a description of
stochastic matrices, see "The Theory of Stochastic Processes," Cox, D. R. and Miller, H.
D., John Wiley and Sons, Inc. (1965).

If the worksheet has been redimensioned and the number of rows is less than that needed
to store all the properties of a matrix, then only as many properties will be stored as is
possible.

MPROPERTIES of the matrix in (R)
, (C) of size (r)x(c)

This form of the instruction prints the 31 properties for a square matrix, or 20
properties for a non-square matrix, but provides no storage of results.

I
' ' '

7
I MPROPERTIES of matrix (R)

, (C) size (r)x(c) put properties in col (C) /

/
,

/

The properties of the matrix are printed and also put in the column designated by the
5th (last) argument.

/ "

r~" "

7
I MPROPERTIES of (R)

,
(C) size (r)x(c) put row of column averages in (R),(C) /

/ ___ __ . /

The (c) column averages are put in the row designated by the last pair of arguments. If
the instruction

MPROPERTIES of matrix in 1,1 size 3x4, put row of column averages in 1,21

had been used in the set of instructions on page 218, then the numbers 6.0000000, 17.000000,
21.333333 and 22.333333 would have been put in row 1 of columns 21, 22, 23 and 24.

/ ' 7
I MPROPERTIES of (R)

, (C) size (r)x(c) put prop's in (C) col ave's in (R) , (C) /

/
,

/

Same as the above form, but the properties are also stored in the worksheet. The
properties of the matrix are put in the column designated by the 5th argument. The location
of the row of column averages is determined by the 6th and 7th (last two) arguments.

r~ " '

' 7
I MPROPERTIES of (R) , (C) size (r)x(c) put col ave's (R),(C) row ave's (R)

, (C) /

/
,

/

This form of the instruction stores both the row and column averages of the matrix. The
column averages are put in the row indicated by the 3rd pair of arguments . The row averages
are put in the column indicated by the 4th (last) pair of arguments. If the instruction

MPROPERTIES matrix in 1,1 size 3x4 put col ave's in 1,21 and row ave's in 1,31

221



had been used in the set of instructions on page 218, then the numbers 7.0, 19.5 and 23.5

would have been put in the first three rows of column 31. The instruction

MPROPERTIES matrix in 1,1 size 3x4, put averages in 4,1 and 1,5

would border the original 3x4 matrix with row and column averages to form a 4x5 matrix.

/ 7
I MPROPERTIES of (R)

, (C) size (r)x(c) put in (C) ave's in (R) , (C) and (R) , (C) /

/ /

Same as the above form, but the properties are also stored in the worksheet. The

properties are put in the column designated by the 5th argument. The location in the

worksheet of the row of column averages is determined by the 6th and 7th arguments. The

location of the column" of row averages is determined by the 8th and 9th (last two)

arguments

.

All forms of the instruction, except the first, have an additional form which has the

letter S at the beginning of the command. The letter S indicates that the automatic

printing of the properties is to be suppressed and only the requested results are stored.

These forms are listed below, but they are not described. If an attempt is made to put the

letter S at the beginning of the command in the first form, above, the instruction will be

ignored and the following informative diagnostic will be given:

* COMMAND IGNORED - S BEFORE COMMAND NAME MEANINGLESS IF NO STORAGE REQUESTED

SMPROPERTIES of matrix (R)
,
(C) size (r)x(c) put properties in col (C)

/—
^ T

/ SMPROPERTIES of (R)
,
(C) size (r)x(c) put row of column averages in (R) , (C) /

/ I

I 7
I SMPROPERTIES of (R) , (C) size (r)x(c) put prop's in (C) col ave's in (R) , (C) /

/ _/

/
—^

I SMPROPERTIES of (R)
,
(C) size (r)x(c) put col ave'ss (R) , (C) row ave's (R) , (C) /

/ _/

/ /
/ SMPROPERTIES of (R)

,
(C) size (r)x(c) put in (C) ave's in (R) , (C) and (R) , (C) /

/ /

>.7 Printing.

MPRINT, MPRINT "L"

These two instructions are listed here for completeness, but they are described in

section 1.8.

MPRINT the matrix in (R)
, (C) of size (r)x(c)

222



MPRINT "L" format, the matrix in (R)
, (C) of size (r)x(c)

223



9. BESSEL FUNCTIONS .

This section describes 34 instructions which may be used to evaluate Bessel functions.

Included are: Bessel functions and modified Bessel functions of order zero, one and n
(integer) for both real and complex argument. Also included, are instructions for computing

zeros of Bessel functions and a definite integral.

9.1 First and Second Functions of Order Zero and One .

BJONE, BJZERO, BYONE, BYZERO.

All the Bessel functions of order zero and one are evaluated using standard series and

asymptotic expansions, and the calculations are performed in double precision arithmetic but

stored as single precision.

J (x) = (l/Tr)/
17

cos[xsin(t)-nt]dt,

Y (x) = (l/O/^sinfxsinOO-ntldt,

for n = and 1. See Abramowitz, M. , and Stegun, I. A., "Handbook of Mathematical

Functions", AMS 55, chapter 9.

BJONE of (E) put results in column (C)

BJONE evaluates the Bessel function of the first kind of first order, J] (x).

BJZERO of (E) and put results in column (C)

BJZERO evaluates the Bessel function of the first kind of zero order, Ji (x).

BYONE of (E) and put results in column (C)

BYONE evaluates the Bessel function of the second kind of first order, Yi(x). Whenever

x=0.0, the result will be set equal to zero and the following arithmetic diagnostic is

given:

** NEGATIVE ARGUMENT TO SORT, LOG, OR RAISE

BYZERO of (E) and put results in column (C)

BYZERO evaluates the Bessel function of the second kind of zero order Y (x). If x=0.0,

the result is set equal to zero and the following arithmetic diagnostic is given:

** NEGATIVE ARGUMENT TO SORT, LOG, OR RAISE

224



9.2 Modified Functions .

BIONE, BIZERO, BKONE, BKZERO.

These instructions evaluate the following modified Bessel functions:

I (x) = (l/ir)/
1T

exp[xcos(t)]cos(nt)dt

K (x) = csc(mr/2)/
c

°sin[xsinh(t)]sinh(nt)dt,

for n = and 1.

The results of the modified Bessel functions will be scaled for arguments whose absolute
values are equal to or greater than K = 88.0 (for the National Bureau of Standards
computer), since that is the largest value of exp(K) that can be evaluated in single
precision floating point arithmetic without overflow. The scaling factor used is exp(K).
Whenever scaling does occur, the following arithmetic diagnostic will be given:

** BESSEL ARGUMENTS SCALED TO AVOID OVER/UNDER FLOW. RETURNED (n) TIMES

BIONE of (E) and put results in column (C)

BIONE evaluates the modified Bessel function of the first kind of first order, Ii(x).
The result will be set equal to exp(-x)Ii (x) , for the absolute value of x equal or greater
than K. If column 38 contains the values 1.0, 2.5 and 5.0, then the instruction

BIONE of x in col 38 and put Ii(x) in col 2

will put the following values in column 2:

Row/ Column 2_

1 .56515910
I 2.5167162
3 24.335642

BIZERO of (E) and put results in column (C)

BIZERO evaluates the modified Bessel function of the first kind of zero order, Io(x).

For |x| > K, Io(x) will be multiplied by exp(-x) so that the result will stay within the

bounds of the computer capability.

BKONE of (E) and put results in column (C)

BKONE evaluates the modified Bessel function of the second kind of first order, Ki (x)

.

The result will be scaled by exp(x), if |x| ^ K. If x=0.0, the result is set equal to zero

and the following arithmetic diagnostic is given:

** NEGATIVE ARGUMENT TO SQRT, LOG, OR RAISE

BKZERO of (E) and put results in column (C)

225



BKZERO evaluates the modified Bessel function of the second kind of zero order, Ko (x)

,

and the results will be multiplied by exp(x), if |x| ^ K. If x=0.0, the result is set equal
to zero and the following arithmetic diagnostic is given:

** NEGATIVE ARGUMENT TO SQRT, LOG, OR RAISE

9.3 Modified Functions with Extreme Valued Argument .

EXIONE, EXIZERO, EXKONE, EXKZERO

The formulas for evaluating these functions are the same as those in section 9.2; except
the scale factor, exp(x), is part of the formulas and is not optional.

EXIONE of (E) and put results in column (C)

EXIONE evaluates the modified Bessel function of the first kind of first order.
Assuming column 38 contains the numbers 1.0, 2.5 and 5.0, the instruction

EXIONE of x in col 38 and put exp(-x)Ii(x) in col 3

will put the following numbers in column 3:

Row/Column 3

1 .20791041
2 .20658465
3 .16397227

Note , if the numbers in column 2 of the example of BIONE are multiplied by exp(-x), the
results will equal those in column 3 in the above example.

EXIZERO of (E) and put results in column (C)

EXIZERO evaluates the modified Bessel function of the first kind of zero order,
exp(-x)I (x).

EXKONE of (E) and put results in column (C)

EXKONE evaluates the modified Bessel function of the second kind of first order,
exp(x)Ki(x). The result is set equal to zero for x=0.0, and the following arithmetic
diagnostic is given;

** NEGATIVE ARGUMENT TO SQRT, LOG, OR RAISE

EXKZERO of (E) and put results in column (C)

EXKZERO evaluates the modified Bessel function of the second kind of zero order,
exp(x)K (x). If x=0.0, the result is set equal to zero and the following arithmetic
diagnostic is given:

226



** NEGATIVE ARGUMENT TO SQRT, LOG, OR RAISE

9.4 Complex Functions; Angle=7r/4 (Kelvin Functions) .

KBIONE, KBIZERO, KBKONE, KBKZERO

The Bessel functions of complex argument, Rexp(i-rr/4) , computed for the above commands
are related to the Kelvin functions as follows:

I (Re
i7r/4

)
= ber(R) + i bei(R)

K
Q
(Re

i7r/4
)

= ker(R) + i kei(R)

I (Re
iir/4

;)
= bei (R) - i ber (R)

K^Re" 74
)

= kei
1
(R) + i ker (R)

The results will be scaled if the absolute value of R//2 is equal to or greater than K =

88.0 (for NBS computer), and the following arithmetic diagnostic will be given:

** BESSEL ARGUMENTS SCALED TO AVOID OVER/UNDER FLOW. RETURNED (n) TIMES

KBIONE of R=(E) put real part in column (C) and imaginary part in column (C)

KBIONE evaluates the Bessel function of complex arguments of order one Ii (Rexp(iir/4))

.

The results will be scaled by the factor exp(-R//2), if necessary. If NRMAX is equal to 3,

then the instruction

KBIONE of R = 3.0 put real part in col 7, imaginary part in col 8

will put the number -.48745418 in rows one, two and three of column 7 and the number
1.7326442 in column 8.

KBIZERO of R=(E) put real part in column (C) and imaginary part in column (C)

KBIZERO evaluates the Bessel function of complex arguments of order zero,

I (Rexp(iir/4)). The results will be scaled by the factor exp(-R/V2) , if necessary.

KBKONE of R=(E) put real part in column (C) and imaginary part in column (C)

KBKONE evaluates the Bessel function of complex arguments of order one, for

Ki(Rexp(iiT/4)). Whenever necessary, the scale factor used is exp(R//2).

KBKZERO of R=(E) put real part in column (C) and imaginary part in column (C)

227



KBKZERO evaluates the Bessel function of complex arguments of order zero, for
K '(Rexp(iTr/4)). Whenever necessary, the scale factor used is exp(R//2).

9.5 Complex Functions with Extreme Valued Real Argument (Kelvin Functions) .

KEXIONE, KEXIZERO, KEXKONE, KEXKZERO

These instructions are similar to the instructions in section 9.4. They evaluate the
same Bessel functions of complex argument; except the values are scaled before the results
are put in the designated columns.

KEXIONE of R=(E) put real part in column (C) and imaginary part in column (C)

KEXIONE evaluates the Bessel function of complex argumeuts of order one with a scale
factor, exp(-R//2)I 1 (Rexp(iir/4)).

KEXIZERO of R=(E) put real part in column (C) and imaginary part in column (C)

KEXIZERO evaluates the Bessel function of complex arguments of order zero with a scale
factor, exp(-R//2)I (Rexp(iTr/4)).

KEXKONE of R=(E) put real part in column (C) and imaginary part in column (C)

KEXKONE evaluates the Bessel function of complex arguments of order one with a scale
factor, exp(R//2)K 1 (Rexp(iir/4)). If R is less than or equal to zero, the following
arithmetic diagnostic is given:

** NEGATIVE ARGUMENT TO SQRT, LOG, OR RAISE

KEXKZERO of R=(E) put real part in column (C) and imaginary part in column (C)

KEXKZERO evaluates the Bessel function of complex arguments of order zero with a scale
factor, exp(R//2)K (Rexp(iTr/4)) . If R is less than or equal to zero, the following
arithmetic diagnostic is given:

** NEGATIVE ARGUMENT TO SQRT, LOG, OR RAISE

9.6 Complex Functions with Arbitrary Angle, 0<A<Tr/2 .

CIONE, CIZERO, CKONE, CKZERO

These instructions are similar to the instructions in section 9.4. Whereas in section
9.4 the angle is assumed to be tt/4, these instructions permit the user to specify the angle
in radians. The angle or angles designated must be equal to or greater than zero and less
than or equal to it/ 2.

The results will be scaled, if the absolute value of Rcos(A) is greater than or equal
to K = 88.0 (for NBS computer), and the following arithmetic diagnostic will be given:

** BESSEL ARGUMENTS SCALED TO AVOID OVER/UNDER FLOW. RETURNED (n) TIMES

228



CIONE of R=(E), A=(E) put real part in column (C) and imaginary part in col (C)

CIONE evaluates the Bessel function of complex arguments of order one, Ii (Rexp(iA)),
where the angle A is in radians. If necessary the result will be scaled by the factor
exp(-Rcos A). If column 54 contains the values 2, 4, 6 and 8, the instruction

CIONE of R in col 54, angle=. 523598775, put real part in col 2, imaginary in col 3

will place the following results in columns 2 and 3:

Real Part Imaginary

Row/Column 2 3

1 .78785283 1.0378416
1 -1.3246755 5.7005536
3 -25.943990 9.9659038
? -112.10820 -80.535762

Note , the angle in this example (.523598775 radians) is 30 degrees.

CIZERO of R=(E), A=(E) put real part in col (C) and imaginary part in col (C)

CIZERO evaluates the Bessel function of complex arguments of order zero, I (Rexp(iA))

,

and the scale factor used is exp(-Rcos A), if necessary.

CKONE of R=(E), A=(E) put real part in column (C) and imaginary part in col (C)

CKONE evaluates the Bessel function of complex arguments of order one, Ki (Rexp(iA)) , and
the scale factor exp(Rcos A) is used, if necessary.

CKZERO of R=(E), A=(E) put real part in col (C) and imaginary part in col (C)

CKZERO evaluates the Bessel function of complex arguments of order zero, K (Rexp(iA))

,

and the scale factor exp(Rcos A) is used, if necessary.

9.7 Complex Functions with Extreme Real Argument .

CEIONE, CEIZERO, CEKONE, CEKZERO

These commands are the same as those in 9.6; except each of the functions is always

multiplied by a scale factor.

CEIONE of R=(E), A=(E) put real part in col (C) and imaginary part in col (C)

CEIONE evaluates the Bessel function of complex arguments of order one with a scale

factor, exp(-Rcos A)Ii (Rexp(iA)).

229



CEIZERO of R=(E), A=(E) put real part in col (C) and imaginary part in col (C)

CEIZERO evaluates the Bessel function of complex arguments of order zero with a scale
factor, exp(-Rcos A)I (Rexp(iA))

.

CEKONE of R=(E), A=(E) put real part in col (C) and imaginary part in col (C)

CEKONE evaluates the Bessel function of complex arguments of order one with a scale
factor, exp(Rcos A)Ki (Rexp(iA)) , and if R is less than or equal to zero, the following
arithmetic diagnostic is given:

** NEGATIVE ARGUMENT TO SQRT, LOG, OR RAISE

CEKZERO of R=(E), A=(E) put real part in col (C) and imaginary part in col [C)

CEKZERO evaluates the Bessel function of complex arguments of order zero with a scale
factor, exp(Rcos A)K (Rexp(iA)) , and if R is less than or equal to zero, the following
arithmetic diagnostic is given:

** NEGATIVE ARGUMENT TO SQRT, LOG, OR RAISE

9.8 Zeros of Bessel Functions .

ZEROS BJONE, ZEROS BJZERO

If NRMAX is greater than 1000, only the first 1000 positive roots are computed.

ZEROS BJONE put x in col (C) and J (x) in col (C)

ZEROS BJONE computes the positive roots for the Bessel function Ji(x )=0,
s=l,2,...,NRMAX and the values of J (x ). For NRMAX=2, the instruction

ZEROS BJONE put x in col 17 and J (x ) in col 24

will give the following results in columns 17 and 24;

x
s

J (x
s
)

s Row/column 17 24

1 1 3.831706 -.4027594
2 1 7.0155866 .30011575

ZEROS BJZERO put x in col (C) and Jj (x) in col (C)

230



ZEROS BJZERO computes the positive roots for the Bessel function Jo(x )=0,
s= 1,2,...,NRMAX and the values of J! (x ). The instruction

s

ZEROS BJZERO put x in col 1 and Ji(x ) in col 2

for NRMAX=2, will produce the following results:

x Ji(x )

s Row/Column 1 2

2.4048256
5.200781

.51914749
-.34026480

9.9 Bessel Fuctions of Order n.

BESIN, BESJN, BESKN

These commands compute the integral orders of the Bessel functions of first and second
kind for n=0,l,... ,NRMAX. If NRMAX is greater than 99, only the first 100 values are
computed. The first argument of these commands must be a constant with a decimal point. If
the constant is too large or too small, the result is set equal to zero and the following
informative diagnostic is given:

* ARG FOR BESIN, BESJN, BESKN GIVES A RESULT TOO LARGE/SMALL. COMMAND NOT EXECUTED

BESIN of x=(K) and put results in column (C)

BESIN computes I (x) for order n=0,l, . .
.

, NRMAX. For NRMAX=3, the instruction

BESIN for x=5.0 put results in column 4

will put the following values in column 4:

Row/Column 4

1 1(5)
I 2 (5)

.17759677
-.32757914

.046565116

BESJN of x=(K) put in column (C) :

BESJN computes J (x) for order n=0,l,. ., NRMAX.

BESKN. of x=(K) put in column (C) :

BESKN computes K (x) for order n=0,l, . .
.

, NRMAX.

231



9.10 Integral .

INTJO

INTJO of x=(E) put in column (C)

INTJO evaluates the definite integral of the Bessel function of order zero:

f(x) = /*J (t)dt.

232



10. THERMODYNAMICS .

This section contains 11 instructions which are useful for thermodynamic calculations.
The instructions in section 10.1 have more general use.

10.1 Temperature Scale Conversion .

CTOF, FTOC

The two instructions in this section enable one to convert temperature from degrees
Celsius (centigrade) to degrees Fahrenheit and to convert from degrees Fahrenheit to degrees
Celsius, respectively. Whenever degrees in Celsius is less than -273.15 (less than Kelvin
zero), the following informative diagnostic is given:

* NEGATIVE ABSOLUTE TEMPERATURES CONVERTED

CTOF for Celsius (E) put Fahrenheit equivalent in column (C)

The instruction converts degrees Fahrenheit to degrees Celsius using the relation

°F = 32.0 + 1.8°C

FTOC Fahrenheit is (E) and put Celsius equivalent in column .(C)

The instruction converts degrees Celsius to degrees Fahrenheit using the relation

°C = -32.0 + °F/1.8
10.2 Systems Of Units .

CGS, SI

Values of the fundamental physical constants are given and discussed in section B1.14.

The fundamental physical constants (except ir and e) listed in the table in section B1.14 are
in the OMNITAB II system to the full significance given in Abramowitz, M. and Stegun, I. A.,
Handbook of Mathematical Functions, National Bureau of Standards, AMS 55. The physical
constants may be referenced in either centimeter-gram-second (CGS) units or in the Systeme
International (SI) units. If the system of units is not specified, then SI units will be

used.

CGS system of fundamental physical constants, centimeter-gram-second

After this instruction is executed, the fundamental physical constants will be in the

centimeter-gram-second units. In the sample

CGS system
DEFINE *CTW0* into column 5

the value entered into all rows of column 5 is 1.43879.

233



This instruction resets the units of the fundamental physical constants in the SI

system, or Systeme International d 'Unites.

10.5 Molecular Weight .

ATOMIC, MOLWT

The atomic weights of the elements from atomic number 1, hydrogen, to atomic number 103,
Lawrencium, will be put in the specified column. If the number of rows in the worksheet is
less than 103, only enough values will be stored to fill the column and the following
informative diagnostic will be given:

* COLUMN NOT LONG ENOUGH TO STORE ALL ELEMENTS. ONLY NROW WILL BE STORED

If NRMAX is less than 103 or the number of rows in the worksheet, NRMAX will be reset to the
number of atomic weights stored. The values for the atomic weights were obtained from
Comptes Rendus XXV Conference, International Union of Pure and Applied Chemistry, 1970.

MOLWT evaluates the molecular weight of compounds. The last argument of the instruction
specifies the column number where the molecular weight of the compound is to be put. All
the rows through NRMAX will contain the same value. The other arguments are integers and
are used as pairs. Therefore, this instruction always has an odd number of arguments. The
first constant in each pair specifies the atomic number of the element and the second
argument indicates what multiplying factor is to be used. If one wants to evaluate the
molecular weight of water (2 parts hydrogen, 1 part oxygen) the instruction to use is

MOLWT 1 atomic no. hydrogen 2 parts, 8 at. no. oxygen 1 part put in col 31

If NRMAX=4, then column 31 contains 18.0154, 18.0154, 18.0154 and 18.0154.

10.4 Properties Of State .

BOLDISTRIBUTION, EINSTEIN, PARTFUNCTION, PFATOMIC, PFTRANSLATIONAL

These instructions calculate and store thermodynamic tables of properties of state..

Temperatures are specified in Kelvin degrees. The last argument of each instruction
specifies the starting storage location of the table computed. If there are not enough
columns in the worksheet to store the table, the following fatal error occurs:

*** COLUMN NUMBER TOO BIG OR LESS THAN 1

Negative temperatures and wave numbers are not permitted and cause the following fatal
error

:

*** ILLEGAL ARGUMENT ON CARD

234



BOLDISTRIBUTION for temp (E) , wave nos in (C) , degens (C) , put table in (C) on

This instruction (Bolzmann distribution) produces a table giving the fraction of
molecules in each of the n energy levels, having the specified wave numbers, at the given
temperatures, using the formula

g . exp (-hcE./kT) /I
a
.

=J_g
. exp (-hcE . /kT)

to find the fractional population of the ith energy level. The ordered pairs of energy
levels and degeneracies are read from parallel columns indicated as the second and third
arguments of the instruction. These columns are read down to the last nonzero degeneracy to
obtain n pairs. Note, this may be above or below NRMAX. The table generated has NRMAX rows
and n columns. If fewer than n columns lie to the right of the column in which the table
begins, the following fatal error occurs:

*** DEFINED MATRIX OVERFLOWS WORKSHEET

If only one nonzero degeneracy is given, ones will be vectorized to NRMAX, indicating
that all molecules are in the given energy level.

Negative Kelvin temperatures or degeneracies in the worksheet will result in an
informative diagnostic. (If a negative Kelvin temperature is entered in the instruction,
the fatal error *** ILLEGAL ARGUMENT ON CARD occurs.) If no nonzero degeneracies are found
in the specified column, a fatal error occurs.

EINSTEIN of temperatures (E) , wave numbers (E)
,
put table in (C) and succ. cols

EINSTEIN evaluates the contributions to the thermodynamic properties of a harmonic
oscillator in one degree of freedom for desired temperatures designated by the first

argument and the vibrational frequencies defined in wave numbers by the second argument.

The information is stored as a 7 column table starting with the column designated by the

third argument through the succeeding six columns C+l, C+2, ..., C+6 as follows:

Column Function

C E - wave numbers specified by second argument

C+l T - temperatures specified by first argument

C+2 -(F°-ES)/RT = -ln(l-e~
x

)

C+3 (H°-ES)/RT = xe"
x
/(l-e"

x
)

C+4 S°/R = -(F°-ES)/RT + (H°-ES)/RT

C+S C°/R = x 2 e~
x
/(l-e~

x
)

2

C+6 (H°-ES)/R,

where x = hcE/kT and hc/k = 1.43879.

If NRMAX=2 and column 1 had the values 1.25 and 1.50, then the instruction

EINSTEIN 1.43879, column 2 put in column 13

would put the following table in the worksheet in rows 1 and 2 of columns 13 through 19:

235



Row/Col 13 14 15 16 17 18 19

1 1.25 1.43879 .33757957 .50193889 .83951846 .87936628 .72218466
2 1.50 1.43879 .25248246 .43082537 .68330783 .83184856 .61986723

/ J
I EINSTEIN temps (E) , wave nos (E) , R=(K), put table in (C) and succ. cols /

/ /

This instruction is similar to the preceding one. Each of the stored thermal functions,
with the exception of temperatures and wave numbers, is multiplied by R, the third argument
in the instruction.

PARTFUNCTION temp is (E) , wave nos in (C) , degens in (C) , put table in (C) on

Evaluates the following three equations and stores them as a table:

Q° = ["
=1

g.exp(-hcE./kT)

Q
1 = ^=1gi

aicE
1
/kT)exp(-hcE

i
/kT)

Q
2 = I^g^hcE./kT^expC-hcE./kT),

where hc/k = 1.43879, E. is the wave number of the ith energy level, g. are the

degeneracies (weights) of the energy levels and n' is the number of energy levels with non-
zero degeneracies.

If column 2 contains 78, 15868 and 33792 and column 3 contains 9, 5 and 1, then the
instruction

PARTFUNCTION 3000. col 2, col 3, put in column 11

would put the numbers 8.0445831, .9028034 and .10131854 into row 1 of columns 11, 12 and 13

(NRMAX = 1).

PFATOMIC temp is (E) mol wt . (E) wave nos in (C) degens (C) , put table in (C) on

PFATOMIC evaluates a table of the contributions to the following thermal functions and
stores them in six consecutive columns starting with the column specified by the last
argument

.

Column Function

C T - temperatures
C+l -(F°-ES)/RT = 2.5xln(T) + 1.5xln(M) -3.66495 + ln(Q°)
C+2 (H°-E§)/RT = 2.5 + Q7Q
C+3 S°/R = (H°-E?)/RT - (F°-ES)/RT
C+4 C°/R = 2.5 + (Q7Q ) - (QVQ )

2

C+5 (H°-Eg)/R,

where R = 1.98717 and Q°
, Q

1 and Q
2 are the formulas listed under PARTFUNCTION, above.

Assume columns 2 and 3 contain the values given under PARTFUNCTION, then the instruction

PFATOMIC temp 3000. mol wt 31.9988 wave nos 2, G = col 3 put in col 41

would put the numbers 3000.0, 21.549516, 2.5, 24.049516, 2.5 and 7500.0 into row 1 of

columns 41 to 46.

236



A table of the translational contributions to the thermal functions is computed and
stored in six consecutive columns starting with the column specified by the last argument.

The contents of the six columns are as follows:

Column Function

C T - temperatures
C+l -(F°-ES)/RT = 2.5xln(T) + l.Sxln(M) -3.66495

C+2 (H°-ES)/RT = 2.5
C+3 (H°-ES)/RT - (F°-Eg)/RT
C+4 C°/R =2.5

C+5 (H°-Eg)/R

237



11. INDEX TO COMMANDS DESCRIBED IN PART C.

Page number shown is the page on which the first form of the instruction appears.
Abbreviations and synonyms are not listed.

AADD 187 BOLDISTRIBUTION 235 ERROR 167
AAVERAGE 193 BYONE 224 EXCHANGE 100
ABRIDGE 61 BYZERO 224 EXIONE 226
ABRIDGE "L" 74 CADD 95 EXIZERO 226
ABSOLUTE 81 CDIVIDE 95 EXKONE 226
ACCURACY 89 CEIONE 229 EXKZERO 226
ACOALESCE 194 CEIZERO 230 EXPAND 92
ACOS 84 CEKDNE 230 EXPONENTIAL 83
ACOSD 84 CEKZERO 230 F PROBABILITY 163
ACOSH 84 CENSOR 102 FINISH 180
ACOT 84 CERF 166 FIT 152
ACOTD 84 CGS 233 FIXED 61
ACOTH 84 CHANGE 81 FLEXIBLE 61
ADD 80 CIONE 229 FLIP 103
ADEFINE 191 CI ZERO 229 FLOATING 61
ADIVIDE 188 CKONE 229 FORMAT "L" 74
AERASE 192 CKZERO 229 FRACTIONAL 89
MOVE 192 CLOSE UP 103 FREQUENCY 111
AMULTIPLY 189 CMULTIPLY 96 FTOC 233
ANTILOG 82 COMPARE 183 GAUSS QUADRATURE 179
APRINT 75 CORRELATION 162 GENERATE 59
APRINT "L" 76 COS 85 HARMONIC 175
APROPERTIES 196 COSD 85 HEAD 63
ARAISE 189 COSH 85 HERMITE 168
AS IN 85 COT 85 HIERARCHY 105
ASIND 85 COTD 86 HISTOGRAM 113
ASINH 85 COTH 86 IFEQ 183
ASUBTRACT 190 COUNT 97 IFGE 184
ATAN 85 CPOLAR 96 IFGT 184
ATAND 85 CREAD TAPE "L" 78 IFLE 184
ATANH 85 CRECTANGULAR 96 IFLT 185
ATOMIC 234 CSET TAPE "L" 78 IFNE 184
ATRANSPOSE 192 CSUBTRACT 96 INCREMENT 181
AVERAGE

'

94 CTOF 233 INSERT 103
BACKSPACE TAPE "L" 77 DEFINE 97 INTEGER 90
BEGIN 180 DEMOTE 99 INTERPOLATE 176
BESIN 231 DIMENSION 56 INTJO 232
BESJN 231 DIVIDE 80 ISETUP 172
BESKN 231 DUMMY "L" 56 ISOLATE 172

BIONE 225 DUPLICATE 100 ITERATE 175
BIZERO 225 EINSTEIN 235 KBIONE 227
BJONE 224 ELLIPTICAL FIRST 166 KBIZERO 227

BJZERO 224 ELLIPTICAL SECOND 166 KBKONE 227

BKONE 225 ENDFILE TAPE "L" 78 KBKZERO 227

BKZERO 225 ERASE 98 KEXIONE 228

238



KEXIZERO 228 NEW PAGE 64 SEARCH 107
KEXKONE 228 NHISTOGRAM 113 SELECT 108
KEXKZERO 228 NO LIST 57 SEPARATE 104
LAGUERRE 169 NORMLAGUERRE 169 SET 60

LEGENDRE 169 NOTE 64 SET TAPE "L" 79

LIST (n) 56 NOTE1 64 SFIT 154
LOGE 83 NOTE2 64 SHORTEN 104
LOGTEN 83 NPRINT 62 SI 234

M(AD) 207 NPRINT "L" 74 SIN 86

M(AV) 207 NULL 57 SIND 86

M(DA) 208 OMNITAB 57 SINH 86

M(V'A) 208 ONEWAY 124 SKIP TAPE "L" 79

M(X'AX) 209 ORDER 105 SMPROPERTIES 222

M(X'X) 209 PAGE PLOT 66 SOLVE 178

M(XAX') 210 PARPRODUCT 93 SONEWAY 127

M(XX') 209 PARSUM 90 SORT 106
MADD 203 PARTFUNCTION 236 SPACE 65

IvIATCH 107 PERFORM 181 SPOLYFIT 154

MAXIMUM 94 PFATOMIC 236 SQRT 82

MAXMIN 177 PFTRANSLATIONAL 237 SQUARE 82

MDEFINE 199 PLOT 67 SSTATISTICAL 121

MDIAGONAL 199 POLYFIT 153 STATISTICAL 121

MEIGEN 211 PRINT 62 STOP 58

MERASE 200 PRINT "L" 75 STRUVE ONE 167

MIDENTITY 200 PRINT NOTE 64 STRUVE ZERO 168

MINIMUM 94 PRODUCT 93 STWOWAY 138

MINVERT 212 PROMOTE 101 SUBTRACT 81

MKRONECKER 204 PUNCH 76 SUM 91

MMATVEC 200 PUNCH "L" 76 TAN 86

MMOVE 201 RAISE 80 TAND 86

MMULTIPLY 204 RANKS 115 TANH 86

MOLWI 234 READ 59 TCHEBYSHEV 170

MORTHO 214 READ "L" 75 TITLEX 70

MOVE 101 READ TAPE "L" 78 TITLEY 70

MPRINT 76 READ TAPE "L","L" 78 TITLE1 65

MPRINT "L" 76 RESET 98 TITLE2 65

MPROPERTIES 221 RESET 'V" 99 TITLE3 65

MRAISE 205 RESTORE 182 TITLE4 65

MSCALAR 205 REWIND TAPE "L" 78 TWOWAY 131

MSUBTRACT 206 RMS 94 UCHEBYSHEV 170

ivlTRANSPOSE 201 ROUND 90 UNIFORM RANDOM 163

MTRIANGULARIZE 215 ROW SUM 90 WRITE TAPE "L" 79

MULTIPLY 80 SAPROPERTIES 196 WRITE TAPE "L","L' 79

MVECDIAGONAL 202 SCAN 58 ZEROS BJONE 230

MVECMAT 202 SCORRELATION 163 ZEROS BJZERO 230

NEGEXPONENTIAL 83

239





PART D

LIST OF INSTRUCTIONS

241



LIST OF INSTRUCTIONS
NATIONAL BUREAU OF STANDARDS OMNITAB II - VERSION 5.0 - May 15, 1970

1. Instructions are listed alphabetically; except all the array operation instructions
are listed separately after the A's and all the matrix operation instructions are listed
separately after the M's. All array operation instructions begin with the letter A and all
the matrix operation instructions begin with the letter M. The exception is the letter S,

which is used in SAPROP and SMPROP to indicate suppression of automatic printing. All forms

of an instruction, synonyms and abbreviations are listed.

2. The command name is given in capital letters. Non-essential, descriptive words
which clarify the meaning of an instruction are printed in lower case letters. The dollar
sign, $, precedes additional comments and information. No numerals are used in a command
name except in TITLE1, TITLE2, TITLE3, TITLE4,- NOTE1 and NOTE2. The number must immediately
follow TITLE or NOTE and is part of the command name. A blank space must precede any

descriptive words used immediately after a command name. When an instruction has more than
one form, the alternative form(s) is given just below and indented.

3. Some command names have a qualifier denoted by "L" where "L" indicates either the

letter A, B, C, D, E or F. The qualifier (without quotation marks) is part of the command
name. One blank space, at least, must precede and follow the qualifier without any

additional characters. Some of the TAPE instructions have two qualifiers. One instruction,

RESET "V", has the qualifier "V" where "V" denotes the letter V, W, X, Y or Z.

Instructions with a qualifier are considered distinct from the similar instruction without a

qualifier and are not indented.

4. Parentheses enclosing a letter indicate the type of argument [number) allowed. To

make the the type of argument used explicit, descriptive words are used as much as possible.

Lower case letters always represent integers without a decimal point. Examples are (r) =

the number of rows and (c) = the number of columns^ Capital letters are used as follows:

(C) = a COLUMN number, which must not have a decimal point

(E) = EITHER a column number or a constant

(K) = a CONSTANT, which must have a decimal point

(N) = an instruction NUMBER with or without a decimal point

(R) = a ROW number, which must not have a decimal point

5. On the extreme right, auxiliary information is given. Use of this information can

prevent errors. Notes are defined as follows. Note on number of arguments is always first.

A = an abbreviation exists
B = this" instruction may store values below NRMAX
C = this instruction cannot be stored for repeated execution

D = number of arguments in the instruction must be odd, but cannot exceed 100

E = number of arguments in the instruction must be even, but cannot exceed 100

M = this instruction must be stored for repeated execution

N = execution of this
-
instruction may or will affect the value of NRMAX

P = this instruction produces printing

S = one or more synonyms exist or this is an abbreviation of another instruction

V = the number oT arguments is variable, but cannot exceed 100

W = this instruction will work anywhere in the worksheet, i.e. below NRMAX

X = this particular form oT the instruction does not provide storage of results

If V, D or E is not applicable, the exact number of arguments allowed is given.

This information is summarized in the footnote which appears below and on all other pages.

(C)=C0LUMN number; (E)=EITHER col number or constant; 00 =C0NSTANT; (N)=instr. nulber

(R)=R0W number; (small letter) = always integer; qualifier "L"=LETTER A,B,C,D,E or F.

Abbreviation; B=below NRMAX; C=cannot store; D=args odd; E=args even; M=must store;

N=affect NRMAX; P=print; S=synonym; V=args variable; W=work below NRMAX; X=no storage

242



ABRIDGE row (R) o£ columns (C) , (C) , ... (C)

ABRIDGE row (R) of columns (C) , (C) ... (C) with (K) significant digits

ABRIDGE row (R) of (C) . .
.
(C) with (K) s . digits

, (C) . .
.
(C) with (K) , etc

ABRIDGE row (R) , (K) cols, (C) (s) s.d., (C) (s) ... $ max width 22, 3 blanks

ABRIDGE row (R) , (K) cols, (C) (s) (m) max width, (C) (s) (m) , ... $ 3 blanks

ABRIDGE row [R) of (K) cols
,

(C) (s) (m) (b) blanks
, (C) (s) (m) (b) , ...

ABRIDGE "L" format, row (R) of columns (C)
,

(C) ... (C)

ABS value of (E) put in column (C)

ABS value of (E) , multiply by (E), add to (E) ,
put in column (C)

ABSOLUTE value of (E) put in column (C)

ABSOLUTE value of (E) , multiply by (E) , add to (E)
,
put in column (C)

ACCURACY of (E) compared to (E) put in column (C)

ACOS of (E) put in column (C)

ACOS of (E) , multiply by (E) , add to (E)
,
put in column (C)

ACOSD of (E)
,
put iji column (C)

ACOSD of (E) , multiply by (E) , add to (E)
,
put in column (C)

ACOSH of (E)
,
put in column (C)

ACOSH of (E) , multiply by (E) , add to (E)
,
put in column CC)

ACOT of (E), put in column (C)

ACOT of (E) , multiply by (E) , add to (E) ,
put in column (C)

ACOTD of (E), put in colum (C)

ACOTD of (E) , multiply by (E) , add to (E)
,
put in column (C)

ACOTH of (E)
,
put in column (C)

ACOTH of (E) , multiply by (E) , add to (E)
,
put in column (C)

ADD (E) to (E) and put in column CC)

ADD (E) to (E) , multiply by (E) , add to (E)
,
put in column CC)

ANTILOG of (E), put in column (C)

ANTILOG of (E) , multiply by (E) , add to (E)
,
put in column CC)

ASIN of (E)
,
put in column CC)

ASIN of (E) , multiply by (E) , add to (E)
,
put in column CC)

ASIND of CE), put in column (C)

ASIND of (E) , multiply by CE) , add to CE) ,
put m column CC)

ASINH of CE) ,
put in column CC)

ASINH of CE), multiply by (E) , add to CE) ,
put in column CC)

ATAN of CE), put in column CC)

ATAN of (E) , multiply by CE) , add to CE) ,
put in column CC)

ATAND of CE), put in column CC)

ALAND of CE) , multiply by (E) , add to CE) ,
put in column CC)

ATANH of CE) ,
put in column CC)

ATANH of CE) , multiply by CE) , add to CE) ,
put in column CC)

ATOMIC mass table put in column CC)

AVERAGE of column CC) put in column (C)

V,P,W
V,P,W
V,P,W
V,P,W
V,P,W
V,P,W
V,P,W
2,S
4,S
2,

A

4,

A

3

2

4

2

4

2

4

2

4

2

4

2

4

3

5

2

4

2

4

2

4

2

4

2

4

2

4

2

4

1

2

***** ARRAY OPERATIONS

AADD the array (R) , CQ size Cr)x(c) to array (R) ,
(C) size (r)x(c) put m (_R)

,
CC)

AADD the array in (R) , CQ size Cr)xCc), to array CR),(C), put in CR),(C)

AADD the array in (R),(C) of size CrMc) to CE), put array in (RJ.CC)

AAVERAGE on first col of array in CR) , CC) size CrMc), put array in {R),LQ

10,S,W
8,S,W
7,¥
6,¥

CC)=COLUMN number; CE)=EITHER col number or constant; C.K) CONSTANT; CN) = mstr. number

CR)=ROW number; Csmall letter) = always integer; qualifier "L"-LETTER A,B C,D,E or F.

A=abbreviation; B=below NRMAX; C=cannot store; D=args odd; E=args even; M=must store;

N=affect NRMAX- P=print; S=synonym; V=args variable; W=work below NRMAX; X=no storage

243



MVERAGE on (K) in first col of array (R)
, (C) size (r)x(c) put row in (R)

, (C)
ACOALESCE on first col of array in (R)

, (C) size (r)x(c), put array in (R)
, (C)

ACOALESCE on (K) in first col of (R)
,
(C) size (r)x(c) put row in (R)

, (C)
ADEFINE the array in (R),(C) of size (r)x(c) to be equal to (K)
ADIV the array (R),(C) size (r)x(c) by array (R),(C) size (r)x(c) put in (R),(C)

,ADIV the array in (R),(C) size (r)x(c), by the array (R),(C), put in (R),(C)
ADIV the array in (R)

, (C) of size (r)x(c), by (E)
,
put array in (R) , (C)

ADIVIDE array (R),(C) size (r)x(c) by array (R),(C) size (r)x(c) put in (R),(C)
ADIVIDE the array in (R),(C) size (r)x(c) by array (R),(C), put in (R),(C)
ADIVIDE the array (R),(C), size (r)x(c) by (E) put array in (R),(C)

AERASE the array in (R)
, (C) of size (r)x(c)

AMOVE the array in (R),(C) of size (r)x(c) to (R),(C)
AMULT array in (R)

,
(C) size (r)x(c) by array (R),(C) size (r)x(c) put in (R) , (C)

AMULT the array in (R),(C) size (r)x(c) by the array (R),(C), put in (R)
, (C)

AMULT the array in (R),(C) of size (r)x(c) by (E) , put array in (R)
, (C)

AMULTTPLY array (R)
, (C) size (r)x(c) by (R),(C) size (r)x[c) put in (R) , (C)

AMULTIPLY array in (R)
,
(C) size (r)x(c) by array in (R),(C) put in (R),(C)

AMULTIPLY the array in (R)
, (C) size (r)x(c) by (E) put array in (R),(C)

APRINT the array in (R),(C) of size (r)x(c)
APRINT "L" format, the array in (R),(C) of size (r)x(c)
APROPERTIES of the array in (R),(C) of size (r)xCc)

APROPERTIES of the array in (R)
, (C) of size (r)x(c), put in column (C)

APROPERTIES of array in (R),(C) of size (r)x(c), put column ave's in (R),(C)
APROPERTIES of (R)

, (C) size (r)x(c), put prop in (C), col ave's in (R) , [C)

APROPERTIES of (R)
, (C) size (r)x(c) col ave's in (R) , (C) row ave's in (R),(C)

APROPERTIES array (R) , (C) size (r)x(c), in (C) , ave's in (R),(C) and (R)
, (C)

ARAISE array (R),(C) size (r)x(c) to array (R),(C) size (r)x(c) put in (R),CC)
ARAISE the array in (R)

, (C) of size (r)x(c) to array (R),CC), put in (R) , (C)

ARAISE the array in (R) , (C) of size (r)x(c) to (E)
,
put array in (R) , (C)

ASUB array (R),(C) size (r)x(c) minus array (R),(C) size (r)x(c) put in (R),(C)
ASUB array in (R),(C) size (r)x(c) minus the array (R),(C), put in [R),(C)
ASUB the array in (R),(C) of size (r)x(c) minus (E), put array in CR),CQ

ASUBTRACT array (R)
, (C) size (r)x(c) minus array (R)

,
(C) size (r)x(c) in CR) , CQ

ASUBTRACT array (R)
, (C) size (r)x(c) minus array (R),(C) put in (R),CC)

ASUBTRACT the array in (R),(C) size (r)x(c) minus (E), put array in CR),(C)
ATRANSPOSE the array in (R),(C) of size (r)x(c) into (R),(C)
AZERO the array in (R)

, (C) of size (r)x(c)
SAPROPERTIES of array in (R),(C) of size (r)x(c) put properties in column (C)

SAPROPERTIES of (R)
,
(C) size (r)x[c) put column ave's in (R),(C)

SAPROP of (R),(C) size (r)x[c) put properties in col (C) col ave's in [R)
, ff)

SAPROP of (R),(C) size (r)xCc) put col ave's in CR),(C) row ave's in CR),CC)
SAPROP of (R),(C) size (r)x(c) put in CQ col ave's CR),(C) row ave's CR) , CQ

7,W
6,W
7,W
5,S,W
10,S,W
,S,W
,S,W
A,W

,A,W
,A,W
,S,W
,S,W
S,W

,S,W
,S,W

10.A.W
,A,W
,A,W
,W,P
,W,P

,W,X,P
,W,P,B
,W,P

,W,P,B
8,W,P
9,W,P,B
10,W
8,W
,W

,s,w
,S,W
,S,W
A,W

,A,W
,A,W
,s,w
,S,¥
,f,B
,W
,ff,B

,¥
,¥,B

7,

10.

8

7

4

6

10

8

7

BACKSPACE TAPE "L" unit, (n) records
BEGIN storing instructions for later use

BEGIN storing instructions starting with instr no.

BESIN of (K) put in column (C) $ if nrmax exceeds 99,

BESJN of (K) put in column (C) $ if nrmax exceeds 99,

BESKN of (K) put in column (C) $ if nrmax exceeds 99,

BIONE of (E) put in column (C)

CN) $ no. less than 1000
only 1st 100 computed
only 1st 100 computed
only 1st 100 computed

1

0,C
1,C
2

2

2

2

(C)=C0LUMN number; (E)=EITHER col number or constant; (K)=CONSTANT; CN)=instr. number

(R)=ROW number; (small letter) = always integer; qualifier "L"=LETTER A,B,C,D,E or F.

Abbreviation; B=below NRMAX; C=cannot store; D=args odd; E=args even; M=must store;

N=affect NRMAX; P=print; S=synonym; V=args variable; W=work below NRMAX; X=ho storage

244



BIZERO of (E) put in column (C) 2
BJONE of (E) put in column (C) 2
BJZERO of (E) put in column (C) 2
BKONE of (E) put in column (C) 2
BKZERO of (E) put in column (C) 2
BOLDISTRIBUTION for temp (E) , wave nos in (C) , degens (C) , put table in (C) on 4
BYONE of (E) put in column CC) 2
BYZERO of (E) put in column CC) 2

CADD real (E) imag (E) to real (E) imag (E) put real in col (C) imag in col (C) 6
(DIVIDE real (E) imag (E) by real (E) imag (E) put real in col (C) imag in (C) 6
CEIONE of R equal to (E) , A equal to (E)

,
put x in col (C) and y in col (C) 4

CEIZERO of R equal to (E) , A equal to (E)
,
put x in col (C) and y in col(C) 4

CEKONE of R equal to (E) , A equal to (E)
, put x in col (C) and y in col (C) 4

CEKZERO of R equal to (E) , A equal to (E)
, put x in col (C) and y in col (C) 4

CENSOR col (C) for values less than or equal to (E) , replace by (E), put in (C) 4
CERF of (E) put in column (C) 2

CGS system of fundamental physical constants, centimeter-gram-second
CHANGE sign of values in columns (C) , (C) ... (C) V
CIONE of R equal to (E) , A equal to (E)

,
put x in col (C) and y in col CQ 4

CIZERO of R equal to (E) , A equal to (E)
, put x in col (C) and y in col CC) 4

CKONE of R equal to (E) , A equal to (E)
,
put x in col CC) and y in col (C) 4

CKZERO of R equal to (E) A equal to (E), put x in col (C) and y in col (C) 4
CLOSE UP rows with (K) in columns (C) , (C) ... (C) $ puts zeros at bottom V
(MULTIPLY real (E) imag (E) by real CE) imag (E) put real in (C) imag in (C) 6

COMPARE (E) to (E) using relative tolerance (E) 3,M
CORRELATION between (p) variables in columns (C), (C) ... (C) V,P,X

CORRELATION (p) var's in (C) ... CC), put array of simple coeffs in (R)
, CC) V,P,B

CORRELATION for (p) in (C) . . . (C) ,
put r coeffs in (R),(C), rho in (R)

, (C) V,P,B
COS of (E) put in column (C) 2

COS of (E), multiply by (E) , add to (E), put in column (C) 4

COSD of (E) put in column (C) 2

COSD of (E), multiply by CE), add to (E), put in column CC) 4

COSH of (E) put in column (C) 2

COSH of (E) , multiply by (E) , add to (E)
,
put in column (C) 4

COT of (E) put in column (C) 2

COT of (E), multiply by (E), add to (E)
,
put in column (C) 4

COTD of (E) put in column (C) 2

COTD of (E) , multiply by (E) , add to (E)
,
put in column (C) 4

COTH of (E) put in column (C) 2

COTH of (E), multiply by (E), add to (E), put in column (C) 4

COUNT length of col (C) put in CC) $ searches from below for first nozero number 2

CPOLAR for x = (E)
, y = (E) put rho in col (C) , theta in col (C) 4

CREAD TAPE "L" unit, using (n) records into columns (C)
, CC) ... CC) V,N

CREAD TAPE "L" "L" unit and format, using (n) records, into cols CC) ... CC) V,N
CRECTANGULAR for rho = (E) , theta = CE) put x in col CC) , y in col CC) 4

CSET TAPE "L" unit, using (n) records, into column CC) 2,N
CSET TAPE "L" unit, using (n) records, into row (R) of column CC) 3,N

CSUBTRACT real CE) imag CE) from real (E) imag CE), put real in CC) imag in CC) 6

CTOF for centigrade CE) put Fahrenheit equivalent in column CC) 2

CC)=COLUMN number; CE)=EITHER col number or constant; (K)=CONSTANT; CN)=instr. number

CR)=ROW number; Csmall letter) = always integer; qualifier "L"=LETTER A,B,C,D,E or F.

A=abbreviation; B=below NRMAX; C=£annot store; D=args odd; E=args even; M=must store;

N=affect NRMAX; P=print; S=synonym; V=args variable; W=work below NRMAX; X=no storage

245



DEFINE (E) into column (C) 2
DEFINE the constant (K) into row (R) o£ column (C) 3
DEFINE the value in row (R) of column (C) into column (C) 3
DEFINE the value in row (R) of column (C) into row (R) of column (C) 4

DEMOTE by (r) rows, col (C) into col (C) , col (C) into col (C) , etc. D,N
DEMOTE all values in the worksheet by (r) rows i'n

DIM the worksheet to be (r) rows by (c) columns $ r x c at most 12,500 2
*S

DIMENSION the worksheet to be (r) rows by (c) columns $ r x c at most 12,500 2'a
DIV (E) by (E) and put in column (C) 3 s

DIV (E) by (E), multiply by (E) , add to (E), put in column (C) 5!s
DIVIDE (E) by (E) and put in column (C) 3 A

DIVIDE (E) by (E) , multiply by (E) , add to (E)
, put in column (C) 5,'a

DUMMY "L" $ available for using one's own Fortran subroutines V
DUPLICATE (t) times, the array in (R)

, (C) of size (r)x(c), put in (R)
, (C) 7,N

EINSTEIN of temperatures (E) , wave numbers (E)
,
put table in (C) and succ. cols 3

EINSTEIN temps (E) , wave nos (E) , R=(K), t>ut table in (C) and succ. cols 4
ELLIPTICAL FIRST of (E) put in column (C) 2

ELLIPTICAL SECOND of (E) put in column (C) 2

ENDFILE TAPE "L" unit
ERASE columns (C)

,
(C) ... (C) V

ERASE the entire worksheet and reset nrmax to zero N
ERROR of (E) put in column (C) 2

EXCHANGE col (C) with col (C) , col (C) with col (C) , etc. E
EXECUTE instructions numbered (N) through (N)

, (t) times 3,S
EXECUTE instructions numbered (N) through (N) once 2,S
EXECUTE instruction numbered (N) once 1,S

EXIONE of (E) put in column (C) 2

EXIZERO of (E) put in column (C) 2

EXKONE of (E) put in column (C) 2

EXKZERO of (E) put in column (C) 2

EXP of (E) put in column (C) 2,S
EXP of (E), multiply by (E) , add to (E)

,
put in column (C) 4,S

EXPAND (E) to power (p) in increments of (i)
,
put in col (C) and successive cols 4

EXPAND (E) to power (K) in increments of (K)
,
put in (C) and succ. columns 4

EXPONENTIAL of (E) put in column (C) 2,

A

EXPONENTIAL of (E) , multiply by [E) , add to CE) ,
put in column (C) 4,

A

EXTREMA for x in (C) y in (C) put max x in (C) max y in (C) min x (_Q min y (C) 6,S

FINISH storing instructions for later use 0,C
FIT y in col (C) , weights (E) , (k) variables in columns (C)

,
(C) ... (Q V,P,X

FIT y in (C) , weights (E) , (k) var's in cols (TO . . . (C)
,
put coeffs in col CQ V,P,B

FIT (C), wts (E), to (k) in (C)...(C), put coeffs in CQ, residuals in (C) V,P,B

(C)=C0LUMN number; (E)=EITHER col number or constant; (K)=CONSTANT; (N)=instr. number
(R)=ROW number; (small letter) = always integer; qualifier "L"=LETTER A,B,C,D,E or F.

A=abbreviation; B=below NRMAX; C=cannot store; D=args odd ; E=args even; M=must store;
N=affect NRMAX; P=print; S=synonym; V=args variable; W=work below NRMAX; X=no storage

246



FIT (C), (E), (k), (C)...(C), put coeff in (C) , res. in (C), sd of pv in (C) V,P,B
FIT (C), (E), (k), (C)...(C), put in (C), (C), (C) and Fourier coef in (C) V,P,B
FIT (C), (E), (k), (C)...(C), put in (C) , (Q , (C) , (C) vc matrix in (R)

, (C) V.P.B
FIXED with (d) digits after decimal point 1

FLEXIBLE to return to readable printing
FLIP column (C) into column (C) , column (C) into column (C) , etc E

FLIP the entire worksheet upside down
FLOATING with (s) significant digits 1

FLOATING with eight significant digits
FORMAT "L" ( ) $ put regular Fortran format inside parentheses 0,C
F PROBABILTY with (E) and (E) degrees of freedom, for (E) ,

put tail-area in (C) 4

FRACTIONAL part of (E) put in column (C) 2

FRACTIONAL part of (E) , multiply by (E) , add to (E)
,
put in column (C) 4

FREQUENCY distribution of column (C) put in column (C) 2,N
FREQUENCY distribution of column (C) , use (k) classes, put in column (C) 3,N
FREQUENCY dist'n of col (C) , use (k) classes of length (K)

,
put in col (C) 4,N

FREQUENCY of (C) , use (k) classes of length (K) , start at (K), put in col (C) 5,N
FREQUENCY of (C)

,
put lower boundaries in (C) , upper in (C), freq's in (C) 4,N

FREQUENCY of (C) using (k) classes, put. in columns (C) , (C) and (C) S,N
FREQUENCY of (C) using fk) classes of length (K) put in cols (C) , (C) and (C) 6,N
FREQUENCY of (C) , classes (k) , length (K) , start at (K)

,
put in (C) , (C) and (C) 7,N

FTOC fahrenheit is (E) put centigrade equivalent in column (C) 2

GAUSS QUADRATURE with (K) points, from (K) to (K)
,
put x in (C) , weights in (C) 5,N

(an integer can be used instead of a constant)
GENERATE from (K) in steps of (K) to (K) steps (K) to (K) , ...

,
put in col (C) E,N

Can integer can be used instead of a constant)

HARMONIC analysis of column (C) for (n) ordinates, put coefficients in col (C) 3

HEAD column (C)/ $ 12 characters after / used as column heading 1,C

HERMITE polynomial order (n) of col (C)
,
put in column (C) and successive cols 3

HIERARCHY of column (C)
,
put locations of smallest thru largest in column (C)

HISTOGRAM using mid-points in column (C) and frequencies in column (C) 2,P

IFEQ (E) to (E) within the absolute tolerance (E) 3,M

IFEQ (E) to (E) 2,M

IFGE (E) to (E) 2,M

IFGT (E) than (E) 2,M

IFLE (E) to (E) 2,M

IFLT (E) than (E) 2,M

IFNE (E) to (E) with absolute tolerance (E) 3,M

IFNE (E) to (E) 2,M

(C)=COLUMN number; (E)=EITHER col number or constant; (K) =CONSTANT ;
(N)=instr. number

(R)
T=ROW number; (small letter) = always integer; qualifier "L"=LETTER A,B,C,D,E or F.

A=afebreviation; B=below NRMAX; C=cannot store; D=args odd; E=args even; M=must store;

N=affect NRMAX; P=print; S=synonym; V=args variable; W=work below NRMAX; X^ho storage

247



INCREMENT instruction number (N) by (E)
,

(E) . . . CE) $ no. of args in inst (N) + 1 V,M
INSERT into col (C) from (C) at every (i) row, start with row (R)

,
put in (C) 5,N

INTEGER part of (E) put in column (C) 2

INTEGER part of (E) , multiply by (E) , add to (E)
, put in column (C) 4

INTERPOLATE x in (C) y in (C) length (n) , values (v) in (C)
,
pts (p) ,

put in (C) 7

INTJO of (E) put in column (C) 2

INVERT the matrix in (R) , (C) of size (V)x(c) and put in (R)
, (C) 6,S,W

ISETUP x in (C)
, y in (C), desired y in (C)

,
put in col (C) and next three cols 4,N

ISOLATE x in (C)
, y in (C) desired y equal to (K)

,
put in columns (C) and (C) 5,N

ISOLATE x in (C)
, y in (C) , for (K) , use (p) points, put in cols (C) and (C) 6,N

ITERATE x in (C) y in (C) desired y in col (C) put in (C) and next three cols 4,N

KBIONE of (E) put real part of result in col (C) imaginary part in col (C) 3

KBIZERO of (E) put real part in col (C) and imaginary part in col (C) 3

KBKONE of (E) put real part in col (C) and imaginary part in col (C) 3

KBKZERO of (E) put real part in col (C) and imaginary part in col (C) 3
KEXIONE of (E) put real part in col (C) and imaginary part in col (C) 3

KEXIZERO of (E) put real part in col (C) and imaginary part in col (C) 3
KEXKONE of (E) put real part in col (C) and imaginary part in col (C) 3

KEXKZERO of (E) put real part in col (C) and imaginary part in col (C) 3

LAGUERRE polynomial order (n) of col (C), put in col (C) and successive cols 3

LEGENDRE polynomial order (n) of col (C)
,
put in col (C) and successive cols 3

LIST (n) $ controls listing of instructions, n is zero, one, two, three or four 1,S,P
LIST instructions and diagnostics 0,S,P

LOG of (E) put in column (C) $ log to the base e 2,S
LOG of (E), multiply by (E), add to (E)

,
put in column (C) 4,S

LOGE of (E) put in column (C) 2,

A

LOGE of (E), multiply by (E) , add to (E)
,
put in column (C) 4,A

LOGTEN of (E) put in column (C) 2

LOGTEN of (E) , multiply by (E) , add to (E)
,
put in column (C) 4

MATCH column (C) with (E) , extract from (E) and put in column CC) 4

MAX value of column (C) put in column (C) 2,S
MAX of column (C) put in col (C) , corresponding value of (C) into col (C) ... E,S

MAXIMUM value of column (C) put in column (C) 2 ,A

MAXIMUM of col (C) put in col (C) , corresp value of (C) in (C), ... E,A
MAXMIN x in col (C) y in col (C)

,
put max x in (C) max y (C) min x CC) min y (C) 6,S

MIN value of column (C) put in column (C) 2,S
MIN of col (C) put in col (C) , corresp value of col (C) in CC) , ... E,S

MINIMUM value of column CC) put in column (C) 2,

A

MINIMUM of col CC) put in col (C) corresp value of col CC) in col CC) ... E,A

CC)=COLUMN number; (E)=EITHER col number or constant; Q0 CONSTANT; CN)=instr. number
CR)=ROW number; (small letter) = always integer; qualifier "L"=LETTER A,B,C,D,E or F.

A=abbreviation; B=below NRMAX; C=£annot store; D=args odd ; E=args even; M=must store;

N=affect NRMAX; P=print; S=synonym; V=args variable; W=work below NRMAX; X^rio storage

248



MOUVT of compounds Z=(k), N=(k); Z=(k), N=(k); ... etc put in column (C) D
MOVE the array in (R) , (C) of size (r)x(c) to (R),(C) 6,S,W
MULT (E) by (E) and put in column (C) 3,S

MULT (E) by (E), multiply by (E) , add to (E)
,
put in column (C) 5,S

MULTIPLY (E) by (E) and put in column (C) 3,A
MULTIPLY (E) by (E) , multiply by (E) , add to (E) , put in column (C) 5 ,A

***** MATRIX OPERATIONS *****

MADD the matrix in (R)
, (C) size (r)x(c) to (R)

, (C) size (r)x(c) put in (R)
, (C) 10,S,W

MADD the matrix in (R)
,
(C) size (r)x(c) to matrix in (R)

, (C) put in (R) , (C) 8,S,W
f-DEFINE the matrix in (R) , (C) of size (r)x(c) to have all elements equal to (K) 5,S,W
MDIAGONAL the matrix in (R) , (C) of size (r)x(c) equal to (E) on the diagonal 5,W
MEIGEN of the matrix in (R) , (C) of size (r)x(c), put eigenvalues in column (C) 5,W

ME IGEN of matrix in (R) , (C) size (r)x(c) put eigenvectors in (R) , (C) 6,W
MEIGEN matrix in (R),(C) size (r)x(c), put values in (C) , vectors in (R) , (C) 7,W

MERASE the matrix in (R) , (C) of size (r)x(c) $ sets every element in matrix = 4,S,W
MIDENTITY in (R),(C) of size (r)x(c) 4,W
MINVERT the matrix in (R) , (C) of size (r)x(c), put inverse in (R) , (C) 6,A,W
MKRONECKER product (R)

, (C) size (r)x(c) by (R) , (C) size (r)x(c) put in (R)
, (C) 10,W

MMATVEC make by rows column (C) into the matrix in (R) , (C) of size (r)x(c) 5,W
MMATVEC col vector in (R)

,
(C) into matrix in (R) , (C) of size (r)x(c) 6,W

MMOVE the matrix in (R)
, (C) of size (r)x(c) to (R) , (C) 6,S,W

MMULT matrix (R)
,
(C) size (r)x(c) by matrix (R)

, (C) size (r)x(c) put in (R)
, (C) 10.S.W

MMULTIPLY matrix (R)
,
(C) size (r)x(c) by (R) , (C) size (r)x(c) put in (R),(C) 10,A,W

MORTHO mat (R) , (C) size (r)x(c) weights (E) put orthnormal vectors in (R) , (C) 7,W

MORTHO mat (R) , (C) size (r)x(c) weights (E) put in (R)
,
(C) trans mat (R) , (C) 9,W

MPRINT the matrix in (R)
,
(C) of size (r)x(c) 4,W,P

MPRINT "L" format, the matrix in (R),(C) of size (r)x(c) 4,W,P

MPROPERTIES of the matrix in (R),(C) of size (r)x(c) 4,W,P,X

PROPERTIES of matrix in (R)
, (C) size (r)x(c) put properties in column (C) 5,W,P,B

MPROPERTIES of (R) , (C) size (r)x(c) put column ave's in (R) , (C) .
6,tf,P

PROPERTIES of (R),(C) size (r)x(c) put prop's in (C) col ave's in (R)
,
(C) 7,W,P,B

MPROPERTIES of (R)
,
(C) size (r)x(c) put col ave's (R),(C) row ave's (R.) , CC) 8,W,P

MPROPERTIES of (R)
, (C) size (r)x(c) put in (C) , ave's in (R)

,
(C) and (R) , (C) 9,W,P,B

MRAISE the matrix in (R) , (C) of size (r)x(c) to power (K)
,
put in (R) , (C) 7,S,W

(an integer can be used instead of a constant)

MSCALAR matrix (R),(C) of size (V)x(c) by constant CK) ,
put matrix in [R) , CQ 7,S,W

MSUB mat CR),(C) size (r)x(c) minus mat CR),CQ size Cr)x[c) into (R) , (C) 10,S,W

MSUB matrix in (R) ,
(C) size (r)x[c) minus matrix (R)

, (C) put in (R) , [C)

SUBTRACT mat (R),(C) size (r)x(c) minus mat (R)
,
(C) size (r)x[c) into [R) , (C) 10,A,W

MSUBTRACT matrix (R) , (C) size (r)x(c) minus mat (R),(C) put in (R) , (C) 8

MTRANSPOSE the matrix (R) , (C) size (r)x(c) into matrix in (R) , [C) 6

MTRIANGULARIZE the matrix in (R),(C) size (r)x(c) into matrix in (R) , (C) 6

MTRIANGULARIZE matrix (R) , (C) size (r)x(c) in (R),(C) and inverse in (R) , (C) 8

MVECDIAGONAL the matrix in (R) , (C) of size (r)x(c), put diagonal in column (C) 5

MVECDIAGONAL matrix (R) , (C) size Cr)x(c), put col vector in (R) , (C) 6

MVECMAT vectorize row by row matrix in (R) , (C) size (r)x(c) into column (C) 5

MVECMAT matrix (R) , (C) size (r)x(c), put vector into (R),(C) and below 6

MZERO the matrix in (R)
, (C) of size (r)x(c) 4

M(AD) mat (R),(C) size (r)x(c) times mat with (C) in diag, put mat in (R)
, (C)

M(AV) matrix in (R) , (C) size (r)x(c) by vector in col (C) put vector in col (C) 6

S,W

A,W
S,W
W
W
w
w
w
w
W,S
w
w

(C)=COLUMN number; (E)=EITHER col number or constant; (K)=CONSTANT; CN)=instr. number

(R)=ROW number; (small letter) = always integer; qualifier "L"=LETTER A,B,C,D,E or F.

A=abbreviation; B=below NRMAX; C=cannot store; D=args odd; E=args even; M=must store;

N=affect NRMAX; P=print; S=synonym; V=args variable; W=work below NRMAX; X=ho storage

249



M(AV) matrix in (R),(C) size (r)x(c) by column (C) put vector in (R) , (C) 7,W
M(DA) mat (R) , (C) size (r)x(c) premult by mat with (C) in diag, put in (R),(C) 7,W
M(V'A) matrix (R),(C) size (r)x(c), vector in col (C) put vector in row (R) 6,W

M(V'A) mat (R) , (C) size (r)x(c), vector in col (C),put row vector in (R),(C) 7,W
M(XAX') a-mat in (R)

, (C) size (r)x(c), x-mat (R)
, (C) size (r)x(c), into (R)

, (C) 10,

W

M(XX') matrix in (R)
, (C) o£ size (r)x(c) into (R),(C) 6,W

M(X'AX) a-mat in (R),(C) size Cr)x(c), x-mat in (R),(C) size (r)x(c), in (R),(C) 10,

W

M(X'X) matrix in (R)
, (C) of size (r)x(c) into (R),(C) 6,W

SMPROPERTIES o£ matrix in (R) , (C) of size (r)x[c) put properties in column (C) 5,W,B
SMPROPERTIES of (R),(C) size (r)x(c) put column ave's in (R),(C) 6,W
SMPROPERTIES of (R)

, (C) size (r)x(c) put prop's in (C) col ave's in (R) , (C) 7,W,B
SMPROP of (R),(C) size (r)x(c) put col ave's in (R),(C) row ave's in (R),(C) 8,W
SMPROP of (R),(C) size (r)x(c) put in (C) col ave's (R),(C) row ave's (R) , (C) 9,W,B

NEGEXPONENTIAL of (E) put in column (C) 2

NEGEXPONENTIAL of (E) , multiply by (E) , add to (E)
,
put in column (C) 4

NEW PAGE $ assures next printing will start on a new page
NHISTOGRAM using midpoints in col (C) and frequencies in col (C) $ no new page 2,P
NO LIST $ suppresses listing of instructions
NORMLAGUERRE polynomial of order (n) of col (C) put in col (C) and succ. cols. 3

NOTE $ information in hollerith card columns 7-80 is printed immediately 0,C,P
NOTE1 $ next sixty characters stored for printing first half of note 0,C
NOTE2 $ next sixty characters stored for printing second half of note 0,C
NPRINT columns (C) , (C) , ... (C) $ no new page, col headings or titles V,P

NPRINT columns (C), (C), ... (C) with (K) significant digits V,P
NPRINT cols (C)..(C) with (K) s. digits, (C) . . . (C) with (K) s. digits, etc. V,P
NPRINT (K) cols, (C) with (s) s.d., (C) with (s) , etc $ max width 22,3 blanks V,P
NPRINT (K) cols, (C) with (s) s.d. and Cm) max width, (C) , (s) ,

(m) ... V,P
NPRINT (K) cols, (C) with (s) s.d. (m) max w (b) blanks, [C) , (s) ,

(m) , (M ... V,P
NPRINT "L" format, columns (C) , [C) ... (C) V,P
NULL $ this instruction does nothing

OMNITAB $ information on card is printed as title at the top of each page 0,N,C
ONEWAY analysis for data in column (C) with group number in column (C) 2,P,X

ONEWAY for (C) with tag in (C) put statistics in CC) and next three cols 3,P
ONEWAY for (C) with (C)

,
put tag in (C) , number (C) , means (C) s.d. in (C) 6,P

ORDER independently columns (C) , (C) ... (C) smallest to largest V

PAGE PLOT columns (C)
, (C) ... (C) against column (C) $ max of 6 arguments V,P

PAGE PLOT cols (C) ... (C) vertical scale from (K) to (K) against col (C) V,P
PAGE PLOT cols (C) . . . (C) against col (C), horizontal scale from (K) to (K) V,P
PAGE PLOT cols (C) . . .

(C) vertical (K) to (K) vs col (C) horizontal (K) to (K) V,P

(C)=C0LUMN number; (E)=EITHER col number or constant; (K)=CONSTANT; (N)=instr. number
(R)=R0W number; (small letter) = always integer; qualifier "L"=LETTER A,B,C,D,E or F.

A=abbreviation; B=below NRMAX; C=£annot store; D=args odd; E=args even; M=must store;

N=affect NRMAX; P=print; S=synonym; V=args variable; W=work below NRMAX; X=no storage

250



PAGE PLOT cols (C) . . .
(C) vs (C) horizontally (K) to (K) vertically (K) to (K) V,P

PARPRODUCT of column (C), put partial products in column (C) 2

PARSUM column (C)
, put partial sums in column (C) 2

PARTFUNCTION temp is (E) wave nos in (C) degens in (C) put table in (C) on 4
PERFORM instructions numbered (N) through (N), (t) times 3,S

PERFORM instructions numbered (N) through (N) once '

2,S
PERFORM instruction numbered (N) once 1,S

PFATOMIC temp is (E) mol wt (E) wave nos in (C) degens (C) put table in (C) on 5

PFTRANSLATIONAL temp is (E) mol wt (E) put table in (C) and succ. cols 3

PLOT columns (C) ,
(C) ... (C) against column (C) $ max of 6 arguments V,P

PLOT cols (C) ... (C) vertical scale from (K) to (K) against col (C) V,P
PLOT cols (C) . . .

(C) against col (C) , horizontal scale from (K) to (K) V,P
PLOT cols (C)...(C) vertical (K) to (K), vs col (C) horizontal (X) to (K) V,P
PLOT cols (C) . . .

(C) vs (C) horizontally (K) to (K) vertically (K) to (K) V,P
POLYFIT y in col (C) , using weights (E) , of degree (d)

,
predictor x in col (C) 4,P,X

POLYFIT y in col (C) , wts (E), degree (d) , x in (C)
,
put coefficients in (C) 5,P,B

POLYFIT y in (C) , wts (E) , deg (d) , x in (C)
,
put coeffs in (C) , residuals (C) 6,P,B

POLYFIT (C), (E), (d), (C) put coeffs in (C), res in (C) sd of pv in (C) 7,P,B
POLYFIT (C), (E), (d), (C) put in (C), (C), (C) and fourier coeffs in CC) 8,P,B
POLYFIT (C), (E), (d), (C) put in (C), (C)

, (C) ,
(C) vc matrix in (R) , (C) 10,P,E

PRINT columns (C) , (C) ... (C) V,P
PRINT columns (C) ... (C) with (K) significant digits V,P
PRINT cols (C)...(C) with (K) s. digits, (C) . . . (C) with (K) s. digits, etc. V,P
PRINT (K) cols, (C) with (s) s.d., (C) with (s) , etc. $ max width 22,3 blanks V,P
PRINT (K) cols, (C) with (s) and max width (m) , (C) , (s) ,

(m) etc. V,P
PRINT (K) cols, (C) with (s) s.d. (m) max w (b) blanks, (C) , (s) , (m) , (b) etc. V,P

PRINT "L" format, columns (C), (C) ... (C) V,P
PRINT NOTE $ causes information from notel and note2 to be printed immediately 0,P

PRODUCT row by row of cols (C) , (C) , ... (C) put in col (C) $ at least 4 col nos V
PRODUCT of columns (C) through (C) put in column (C) 3

PROMOTE by (r) rows, col (C) into col (C) , col (C) into col (C) , etc. D

PROMOTE all values in the worksheet by (r) rows 1

PUNCH data in columns (C)
,

(C) ... (C) on hollerith cards $ 4 column limit V
PUNCH "L" format, data in cols (C) ... (C) on hollerith cards V

RAISE (E) to power (E) and put in column (C) 3

RAISE (E) to power (E), multiply by (E), add to (E), put in column (C) 5

RANKS of column (C) put in column (C) $ smallest has rank 1 2,B

READ data on following cards into columns (C) ,
(C) ... (C) one card for each row V,N,C

READ "L" format, (n) cards or rows, into columns (C) , (C) ... (C) V,N
READ TAPE "L" unit into columns (C) , (C) ... (C) V,N
READ TAPE "L", "L" unit and format, into columns (C)

,
(C) ... (C) V,N

REPEAT instructions numbered (N) through (N) , (t) times 3,S

REPEAT instructions numbered (N) through (N) once 2,S

REPEAT instruction numbered (N) once 1,S

RESET nrmax to equal (r) rows $ establishes new working length of worksheet 1,N

RESET "V" equal to (K) $ "V" is variable V, W, X, Y or Z 1

(an integer can be used instead of a constant)

RESTORE instruction (N) to (E), (E) ... (E) $ no of args in instr(N) +1 V
REWIND TAPE "L" unit

(C)=COLUMN number; (E)=EITHER col number or constant; (K)=CONSTANT; (N)=instr. number

(R)=ROW number; (small letter) = always integer; qualifier *'L"=LETTER A,B,C,D,E or F.

A=abbreviation; B=below NRMAX; C=cannot store; D=args odd; E=args even; M=must store;

N=affect NRMAX; P=grint; S=synonym; V=args variable; W=work below NRMAX; X=ho storage

251



RMS of column (C) put root mean square in column (C) 2

ROUND the numbers in column (C) to (n) significant digits and put in column (C) 3
ROW SUM columns (C)

,
(C) ... (C) put in column (C) $ use at least 4 col nos V,S

ROW SUM columns (C) through (C) and put in column (C) 3,S
ROW SUM the entire worksheet and put in column (C) 1,S

ROWSUM columns (C) , (C) ... (C) put in column (C) $ use at least 4 col nos V,S
ROWSUM columns (C) through (C) and put in column (C) 3,S
ROWSUM the entire worksheet and put in column (C) 1,S

SCAN only the first (c) card columns on each of the following hollerith cards 1

SCORRELATION (p) variables in (C) ... (C) put array of simple coeffs in (R) , (C) V,B
SCORRELATION (p) var's in (C) ... (C) put r coeffs in (R)

,
(C) rho in (R),(C) V,B

SEARCH col (C) equal col (C) , move corresp nos in col (C) to (C) , (C) to (C) etc E
SELECT in (C) nos approximating col (C) within abs tolerance (K) put in col (C) 4

SELECT in (C) nos approx col (C) to within abs tol (K) put in cols (C) to (C) 5

SELECT in (C) nos approx (C) within abs tol (K) put in (C) to (C) count (C) 6

SEPARATE from column (C) every (r) th row, start with row (R)
,
put in column (C) 4

SET in one column (C) , data on following hollerith cards 1,N,C
SET starting with row (R) of column (C) data on following hollerith cards 2,N,C

SET TAPE "L" unit into column (C) 1,N,C
SET TAPE "L" unit starting with row (R) of column (C) 2,N,C

SFIT y in (C) , weights (E)
, (k) vars in cols (C)...(C), put coefficients in (C) V,B

SFIT (C), wts (E), to (k) in (C) . . . (C)
,
put coeffs in (C) residuals in (C) V,B

SFIT (C), (E), (k), (C)...(C), put coeff in (C) res in (C) sd of pv in (C) V,B
SFIT (C), (E), (k), (C)...(C), put in (C), (C), (C) and Fourier coeff in (C) V,B
SFIT (C) , (E) , (k) , (C) . . . (C)

,
put in (C) , (C) , (C) , (C) vc matrix in (R) , (C) V,B

SHORTEN column (C) for column (C) equal to (K) put shortened cols in (C) and (C) 5,N
SI system of fundamental physical constants $ formerly mksa
SIN of (E) put in column (C) 2

SIN of (E) , multiply by (E) , add to (E)
,
put in column (C) 4

SIND of (E) put in column (C)" 2

SIND of (E) , multiply by (E) , add to (E)
,
put in column (C) 4

SINH of (E) put in column (C) 2

SINH of (E), multiply by (E), add to (E), put in column (C) 4

SKIP TAPE "L" unit, forward (n) records 1

SOLVE lin eqs with coeffs in (R) , (C) size (r)x(c) consts in (C)
,
put sol in (C) 6

SONEWAY analysis for (C) with group number (C) put in (C) and next three cols 3

SONEWAY for data (C) group no (C) put in cols (C)
,

(C) , (C) and (C) 6

SORT column (C) min to max, carry along corresp values in cols (C) ... (C) V
SORT column (C) 1,S

SPACE (p) lines on printed page 1

SPACE one line on printed page
SPOLYFIT y in col (C) , weights (E) , degree (d), x in (C) put coeffs in col (C) 5 ,B

SPOLYFIT y in (C), wts (E) , deg (d) , x in (C)
,
put coeffs in (C) res in (C) 6,B

SPOLYFIT (C), (E), (d), (C) put coeffs in (C) , res in (C), sd of pv in (C) 7,B

SPOLYFIT (C), (E), (d), (C) put in (C) , (C) , (C) and Fourier coeffs in (C) 8,B
SPOLYFIT (C), (E), (d), (C) put in (C) , (C) ,

(C) , (C) and vc matrix in (R) , (C) 10,

B

SQRT of (E) put in column (C) 2

SQRT of (E), multiply by (E), add to (E)
,
put in column [C) 4

SQUARE (E) and put in column (C) 2

(C)=COLUMN number; (E)=EITHER col number or constant; (K)=CONSTANT; (N)=instr. number
(R)=ROW number; (small letter) = always integer; qualifier "L"=LETTER A,B,C,D,E or F.

A=abbreviation; B=below NRMAX; C=cannot store; D=args odd; E=args even; M=must store;

N=affect NRf^lAX; P=print; S=synonym; V=args variable; W=work below NRMAX; X^ho storage

252



SQUARE (E), multiply by (E) , add to (E), put in column (C) 4
SSTATISTICAL analysis of column (C) put statistics in (C) and next three cols 2,B

SSTATISTICAL analysis of (C) , weights in (C)
, put in (C) and next three cols 3,B

SSTATISTICAL analysis of col (C), put statis in cols (C)
,

(C)
, (C) and (C) 5,B

SSTATISTICAL analysis of (C), weights (C)
, put in col (C), (C), (C) and (C) 6,B

STATISTICAL analysis of column (C) 1,P,X
STATISTICAL analysis of column (C)

,
put statis in (C) and next three cols 2^p)b

STATISTICAL anal, of (C) , wts in (C) , put statis in (C) and next three cols 3,P,B
STATISTICAL anal of (C) wts in (C) don't put in (-C) $ - col no. = no storage 3,P
STATISTICAL analysis of col (C), put statis in cols (C) , (C)

,
(C) and (C) S,P,B

STATISTICAL anal, of (C) wts in (C)
,
put statis in cols (C), (C) , (C) and (C) 6,P,B

STOP $ this is last card of last set of instructions 0,C
STRUVE ONE of (E) put in column (C) 2

STRUVE ZERO of (E) put in column (C) 2

STWOWAY analysis for (r)x(c) table, data in (C) store in (C) and succ. cols 4,B
STWOWAY analysis for (r)x(c) table, data (C) , store from (C) on, wts in (C) 5,B

SUB (E) from (E) and put in column (C) 3,S
SUB (E) from (E) , multiply by (E) , add to (E), put in column (C) 5,S

SUBTRACT (E) from (E) and put in column (C) 3,

A

SUBTRACT (E) from (E) , multiply by (E) , add to (E)
,
put in column (C) 5,

A

SUM rows of column (C) and put sum in column (C) 2

SUM column (C) , rows (R) through (R)
,
put sum in column (C) 4

SUM col (C) , rows (R)
,

(R) ... (R)
,
put sum in col (C) $ at least 5 args V

TAN of (E) put in column (C) 2

TAN of (E) , multiply by (E) , add to (E) , put in column (C) 4

TAND of (E) put in column (C) 2

TAND of (E) , multiply by (E) , add to (E)
,
put in column (C) 4

TANH of (E) put in column (C) 2

TANH of (E) , multiply by (E) , add to (E)
,
put in column (C) 4

TCHEBYSHEV polynomial of order (n) of col (C) put col (C) and successive cols 3

TITLE1 $ next 60 characters printed on first half of second line 0,C
TITLE2 $ next 60 characters printed on second half of second line 0,C
TITLE3 $ next 60 characters printed on first half of third line 0,C
TITLE4 $ next 60 characters printed on second half of third line 0,C
TITLEX $ 60 characters after 2nd space are printed on horizontal axis of plot 0,C
TITLEY $ 51 characters after 2nd space are printed on vertical axis of plot 0,C
TWOWAY analysis for (r) by (c) table, data in (C) , store in (C) and succ. cols 4,P,]

TWOWAY anal, for (r) by (c) table, data in (C) , store from (C) on, wts in (C) 5,P,]

UCHEBYSHEV polynomial order (n) of col (C) put in (C) and successive cols 3

UNIFORM RANDOM numbers starting with (K) put in column (C) 2

(an integer can be used instead of a constant)

(C)=C0LUMN number; (E)=EITHER col number or constant; (K)=CONSTANT; (N)=instr. number
(R)=ROW number; (small letter) = always integer; qualifier "L"=LETTER A,B,C,D,E or F.

A=abbreviation; B=below NRMAX; C=cannot store; D=args odd; E=args even; M=must store;

N=affect NRMAX; P=p_rint; S=synonym; V=args variable; W=work below HRMAX; X=no storage

253



WRITE TAPE "L" unit from columns (C) , (C) ... (C) V
WRITE TAPE "L" "L" unit and format, from columns (C) , (C) ... (C) V

***** 7 *****

ZEROS BJONE put in (C) and (C) $ if nrmax exceeds 1000 only 1st 1000 computed 2

ZEROS BJZERO put in (C) and (C) $ if nrmax exceeds 1000 only 1st 1000 computed 2

***** FND *****

(C)=C0LUMN number; (E)=EITHER col number or constant; (K)=CONSTANT; (N)=instr. number
(R)=ROW number; (small letter) = always integer; qualifier "L"=LETTER A,B,C,D,E or F.

A=abbreviation; B=below NRMAX; C=cannot store; D=args odd; E=args even; M=must store;

N=affect NRMAX; P=print; S=synonym; V=args variable; W=work below NRMAX; X=no storage

254



FORM NBS-114A 11-71)

U.S. DEPT. OF COMM.
BIBLIOGRAPHIC DATA

SHEET

1. PUBLICATION OR REPORT NO.

NBS-TN-552

2. Gov t Accession
No.

3. Recipient's Accession No.

4. TITLE AND SUBTITLE

OMNITAB II USER'S REFERENCE MANUAL

5. Publication Date

October._l.97L-
6. Performing Organization Code

7. AUTHOR(S)
David Hogben, Sally T. Peavy and Ruth N. Varner

8. Performing Organization

10. Project/Task/Work: Unit No.

Proj. 2050131

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

11. Contract/Grant No.

12. Sponsoring Organization Name and Address

Same as No. 9 above.

13. Type of Repott & Period
Covered

Final

14. Sponsoring Agency Code

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here.)

OMNITAB II, a highly user-oriented system for a large computer, is designed to make

computing easy, accurate and effective, particularly for persons who are not pro-

grammers. It is a general-purpose program, which can be learned quickly, for both
simple and complex numerical, statistical and data analysis. OMNITAB executes in-

structions written in the form of simple English sentences. Problem-solving is

further enhanced by the natural structure of the system and its many features. OMNITAB

has been used successfully in government, industry and universities across the country

and in several centers abroad. The system has been implemented on large computers of

at least seven different manufacturers.

The original version of OMNITAB has been completely rewritten to make it as machine
independent as possible and to implement many improvements. This manual describes

Version 5.0. Details are presented so that the user can easily find the specific
information needed in any particular instance. PART A is a simple, compact introduc-

tion to OMNITAB for people who have had no experience using a large computer. PART B

describes the general and special features of the OMNITAB system. PART C gives ex-

planations, with short examples, for the use of specific instructions. PART D is a

complete list of the instructions which are in the system.

17. key words (Alphabetical order, separated by semicolons) Automatic printing; Bessel functions: Data
analysis: Data manipulation: Easy and effective programming in English; List of
instructions; Matrix operations; Numerical analysis; OMNITAB II user oriented computing
system; Self-teaching; Statistical analysis.
18. AVAILABILITY STATEMENT

fX] UNLIMITED.

I I
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE
TO NTIS.

19. SECURITY CLASS
(THIS REPORT)

UNCLASSIFIED

20. SECURITY CLASS
(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

264

22. Price

$2.00

USCOMM-DC 66244-P71

* U. S. GOVERNMENT PRINTING OFFICE : 1971 O - 446-649





NBS TECHNICAL PUBLICATIONS

PERIODICALS NONPERIODICALS

JOURNAL OF RESEARCH reports National
Bureau of Standards research and development in

physics, mathematics, chemistry, and engineering.

Comprehensive scientific papers give complete details

of the work, including laboratory data, experimental

procedures, and theoretical and mathematical analy-

ses. Illustrated with photographs, drawings, and
charts.

Published in three sections, available separately:

• Physics and Chemistry

Papers of interest primarily to scientists working in

these fields. This section covers a broad range of

physical and chemical research, with major emphasis

on standards of physical measurement, fundamental
constants, and properties of matter. Issued six times

a year. Annual subscription: Domestic, $9.50; $2.25

additional for foreign mailing.

• Mathematical Sciences

Studies and compilations designed mainly for the

mathematician and theoretical physicist. Topics in

mathematical statistics, theory of experiment design,

numerical analysis, theoretical physics and chemis-

ty, logical design and programming of computers
and computer systems. Short numerical tables. Issued

quarterly. Annual subscription: Domestic, $5.00;

$1.25 additional for foreign mailing.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer

and the applied scientist. This section includes many
of the new developments in instrumentation resulting

from the Bureau's work in physical measurement,
data processing, and development of test methods.
It will also cover some of the work in acoustics,

applied mechanics, building research, and cryogenic

engineering. Issued quarterly. Annual subscription

:

Domestic, $5.00; $1.25 additional for foreign mailing.

Applied Mathematics Series. Mathematical tables,

manuals, and studies.

Building Science Series. Research results, test

methods, and performance criteria of building ma-
terials, components, systems, and structures.

Handbooks. Recommended codes of engineering
and industrial practice (including safety codes) de-
veloped in cooperation with interested industries,

professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS confer-

ences, bibliographies, annual reports, wall charts,

pamphlets, etc.

Monographs. Major contributions to the technical

literature on various subjects related to the Bureau's
scientific and technical activities.

National Standard Reference Data Series.
NSRDS provides quantitative data on the physical

and chemical properties of materials, compiled from
the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes,

types, quality, and methods for testing various indus-

trial products. These standards are developed co-

operatively with interested Government and industry

groups and provide the basis for common understand-

ing of product characteristics for both buyers and
sellers. Their use is voluntary.

Technical Notes. This series consists of communi-
cations and reports (covering both other agency and
NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards
Publications. This series is the official publication

within the Federal Government for information on

standards adopted and promulgated under the Public

Law 89—306, and Bureau of the Budget Circular A—86
entitled, Standardization of Data Elements and Codes
in Data Systems.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the

Bureau's research, developmental, cooperative, and
publication activities, this monthly publication is

designed for the industry-oriented individual whose
daily work involves intimate contact with science and
technology

—

for engineers, chemists, physicists, re-

search managers, product-development managers, and
company executives. Annual subscription: Domestic,

$3.00; $1.00 additional for foreign mailing.

Consumer Information Series. Practical informa-

tion, based on NBS research and experience, covering

areas of interest to the consumer. Easily understand-

able language and illustrations provide useful back-

ground knowledge for shopping in today's technolog-

ical marketplace.

NBS Special Publication 305, Supplement 1,

Publications of the NBS, 1968-1969. When order-

ing, include Catalog No. CI 3. 10: 305. Price $4.50;

$1.25 additional for foreign mailing.

Order NBS publications from: Superintendent of Documents
Government Printing Office

Washington, D.C. 20402



EDGE INDEX

A Beginner's OMNITAB

Bl How To Use OMNITAB II

B2 Repeated Use Of Commands

B3 Diagnostic Features And Accuracy

B4 For More Effective Use Of OMNITAB II

B5 The OMNITAB II Project

CI Entering And Printing Data

C2 Arithmetic Operations

C3 Data Manipulation

C4 Statistical Analysis >

4.2 Analysis Of One Column Of Data

4.5 Regression

C5 Numerical Analysis

C6 Repeat Mode

C7 Array Operations

C8 Matrix Operations

C9 Bessel Functions

CIO Thermodynamics

Cll Index Of Commands Described in PART C

D List Of Instructions


